首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28284篇
  免费   2586篇
  国内免费   3857篇
  34727篇
  2024年   107篇
  2023年   447篇
  2022年   951篇
  2021年   1586篇
  2020年   1113篇
  2019年   1407篇
  2018年   1280篇
  2017年   964篇
  2016年   1225篇
  2015年   1860篇
  2014年   2276篇
  2013年   2371篇
  2012年   2877篇
  2011年   2500篇
  2010年   1635篇
  2009年   1528篇
  2008年   1649篇
  2007年   1497篇
  2006年   1252篇
  2005年   1119篇
  2004年   889篇
  2003年   810篇
  2002年   658篇
  2001年   441篇
  2000年   354篇
  1999年   367篇
  1998年   252篇
  1997年   200篇
  1996年   190篇
  1995年   152篇
  1994年   133篇
  1993年   91篇
  1992年   96篇
  1991年   86篇
  1990年   69篇
  1989年   62篇
  1988年   54篇
  1987年   35篇
  1986年   34篇
  1985年   44篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   11篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1969年   2篇
  1965年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
Four new aconitine-type C19-diterpenoid alkaloids, were isolated from the roots of Aconitum nagarum Stapf which were named as nagarutines A–D ( 1–4 ), together with eleven known compounds ( 5–15 ). The structures of the compounds were identified by IR, HR-ESI-MS, 1D and 2D NMR spectra. All compounds were tested for the inhibitory effect on LPS induced NO production in RAW 264.7 macrophages, compound 7 showed moderate anti-inflammatory activity effect and Inhibition rate is about 44.50%.  相似文献   
93.
Three previously undescribed diterpenoids, helioscopnoids A–C, and eight known compounds were isolated from the whole plants of Euphorbia helioscopia. Their structures were established by extensive analysis of spectra and data comparison with previous literatures. Among them, compound 4 was identified as 24,24-dimethoxy-25,26,27-trinoreuphan-3β-ol with revised configurations of C-13, C-14, and C-17 (13R*, 14R*, 17R*). Cytotoxicity assays revealed that all compounds exhibited varying levels of cytotoxicity against H1975 cells, with compound 9 displaying the most potent activity, as indicated by cell viability rates of 18.13 % and 20.76 % at concentrations of 20 μM and 5 μM, respectively. This study expands the understanding of E. helioscopia terpenoids’ structural diversity and biological activities, contributing to the exploration of potential therapeutic applications.  相似文献   
94.
Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.  相似文献   
95.
The unscientific application of synthetic pesticides has brought various negative effects on the environment, hindering the sustainable development of agriculture. Nanoparticles can be applied as carriers to improve pesticide delivery, showing great potential in the development of pesticide formulation in recent years. Herein, a star polymer (SPc) was constructed as an efficient pesticide nanocarrier/adjuvant that could spontaneously assemble with thiocyclam or monosultap into a complex, through hydrophobic association and hydrogen bonding, respectively, with the pesticide-loading contents of 42.54% and 19.3%. This complexation reduced the particle sizes of thiocyclam from 543.54 to 52.74 nm for pure thiocyclam, and 3 814.16 to 1 185.89 nm for commercial preparation (cp) of thiocyclam. Interestingly, the introduction of SPc decreased the contact angles of both pure and cp thiocyclam on plant leaves, and increased the plant uptake of cp thiocyclam to 2.4–1.9 times of that without SPc. Meanwhile, the SPc could promote the bioactivity of pure/cp thiocyclam against green peach aphids through leaf dipping method and root application. For leaf dipping method, the 50% lethal concentration decreased from 0.532 to 0.221 g/L after the complexation of pure thiocyclam with SPc, and that decreased from 0.390 to 0.251 g/L for cp thiocyclam. SPc seems a promising adjuvant for nanometerization of both pure and cp insecticides, which is beneficial for improving the delivery efficiency and utilization rate of pesticides.  相似文献   
96.
97.
Common potato (Solanum tuberosum L.) and its wild relatives belong to Solanum section Petota. This section's phylogeny and species delimitation are complicated due to various ploidy levels, high heterozygosity, and frequent interspecific hybridization. Compared to the nuclear genome, the plastid genome is more conserved, has a haploid nature, and has a lower nucleotide substitution rate, providing informative alternative insights into the phylogenetic study of section Petota. Here, we analyzed 343 potato plastid genomes from 53 wild and four cultivated species. The diversity of sequences and genomes was comprehensively analyzed. A total of 24 species were placed in a phylogenetic tree based on genomic data for the first time. Overall, our results not only confirmed most existing clades and species boundaries inferred by nuclear evidence but also provided some distinctive species clade belonging and the maternally inherited evidence supporting the hybrid origin of some species. Furthermore, the divergence times between the major potato clades were estimated. In addition, the species discriminatory power of universal barcodes, nuclear ribosomal DNA, and whole and partial plastid genomes and their combinations were thoroughly evaluated; the plastid genome performed best but had limited discriminatory power for all survey species (40%). Overall, our study provided not only new insights into phylogeny and DNA barcoding of potato but also provided valuable genetic data resources for further systematical research of Petota.  相似文献   
98.
The roles of intraspecific and interspecific competition in producing differentiation within populations of Veronica peregrina were studied in two populations under controlled, greenhouse conditions. In nature, each population spans an environmental gradient across the center and sides of a temporary, vernal pool in California. Individuals at the center are subjected to intense intraspecific competition produced by high densities (to 30 seedlings/cm2) generated by quasi-simultaneous germination (90% of seeds germinate in one week). Individuals at the periphery are subjected to interspecific competition with grasses, which shade out the Veronica 4–6 weeks after the onset of winter growth. I predicted that 1) when grown under immediate intraspecific competition in the greenhouse, offspring of plants from the central subpopulation (C) would perform better (i.e., grow larger and produce more seeds) than those from the periphery (P) and that 2) when grown under delayed interspecific competition provided by Agrostis tenuis and Lollium multiflorum, offspring of plants from the periphery would perform better than those from the center. Both predictions were confirmed. The center-periphery differences were pronounced and statistically significant in an undisturbed population (V-2), while in a population disturbed by yearly plowing (V-3), the differences tended to be consistent with those in V-2 but seldom significant. Distribution of variability tended to be positively skewed and/or leptokurtic in subpopulations grown under “foreign” competition (i.e., intraspecific for P plants and interspecific for C plants) but was normally distributed following exposure to “familiar” competition. Timing of competition affected many results. There were four additional significant differences between the central and peripheral subpopulations. 1) Germination rate: the faster rate in central plants can be advantageous under immediate intraspecific competition. The slower rate in peripheral plants can be advantageous under conditions of erratic and unpredictable soil moisture. 2) Response to nutrient competition: central plants were more sensitive to N-deficiency and peripheral plants were more sensitive to P-deficiency. 3) Allocation of biomass: central plants allocated a greater proportion of biomass to seeds, while peripheral plants allocated a greater proportion of biomass to leaves under all growing conditions. 4) Root elongation: at the seedling stage, central plants have longer roots, while at the adult stage, peripheral plants have longer roots (but not more root mass). Most components of this complex pattern of differentiation are interpretable in an adaptive context. Other results defy simple explanations and underline the importance of phenotypic plasticity, which was pronounced in the competition experiments.  相似文献   
99.
Ectopic ion channels developed locally at the injury site after nerve damage by light ligation around common sciatic nerve of the rats. Different channel types have different processes of formation, accumulation and degeneration. During the first three days after injury, mechanically activated channels that are modulated by Ca++ channel activities first appeared. As the nerve fibers begin to be excited by TEA, a blocker of K+ channels, suggesting that the accumulation of K+ channels, the responsibility of mechanically activated channels was declining. Onset of K+ channels was from the 3rd postoperative day and lasted up to the fiftieth day. This time course of K+ channel development was closely related to allodynia and hyperalgesia of neuropathic animal behaviour. The results suggest that chronic contraction injury induces a dynamic change in the ectopic mechanically activated channels and K+ channels at the injury site of nerve and there is an interchange in the development time courses of the mechanic  相似文献   
100.
1α,25(OH)2-16-ene-D3, a synthetic analog of the steroid hormone, 1α,25(OH)2D3, has great potential to become a drug in the treatment of leukemia and other proliferative disorders, because of its minimal in vivo calcemic activity associated with a potent inhibitory effect on cell growth. However, at present, the mechanisms through which 1α,25(OH)2-16-ene-D3 expresses its biological activities are still not completely understood. Our previous in vitro study in a perfused rat kidney indicated for the first time that 1α,25(OH)2-16-ene-D3 and 1α,25(OH)2D3 are metabolized differently. 1α,25(OH)2-24-oxo-16-ene-D3, an intermediary metabolite of 1α,25(OH)2-16-ene-D3 formed through the C-24 oxidation pathway, accumulated significantly in the perfusate when compared to 1α,25(OH)2-24-oxo-D3, the corresponding intermediary metabolite of 1α,25(OH)2D3. In a subsequent in vivo study, we also reported that 1α,25(OH)2-24-oxo-16-ene-D3 exerted immunosuppressive activity equal to its parent, without causing significant hypercalcemia. In order to establish further the critical role of 1α,25(OH)2-24-oxo-16-ene-D3, in generating some of the key biological activities ascribed to its parent, we performed the present in vitro study using a human myeloid leukemic cell line (RWLeu-4) as a model. Comparative target tissue metabolism studies indicated that 1α,25(OH)2-16-ene-D3 and 1α,25(OH)2D3 are metabolized differently in RWLeu-4 cells, and the differences were similar to the ones we previously observed in the rat kidney. The significant finding was the accumulation of 1α,25(OH)2-24-oxo-16-ene-D3 in RWLeu-4 cells because of its resistance to further metabolism. Biological activity studies indicated that both 1α,25(OH)2-16-ene-D3 and its 24-oxo metabolite produced growth inhibition and promoted differentiation of RWLeu-4 cells to the same extent, and these activities were several fold higher than those exerted by 1α,25(OH)2D3. In addition, the genomic action of each vitamin D compound was assessed in a rat osteosarcoma cell line (ROS 17/2.8) by measuring its ability to transactivate a gene construct containing the vitamin D response element of the osteocalcin gene linked to the growth hormone reporter gene. In these studies, both 1α,25(OH)2-16-ene-D3 and its 24-oxo metabolite exerted similar but potent transactivation activity which was several fold greater than that exerted by 1α,25(OH)2D3 itself. In summary, our results indicate that the production and slow clearance of the bioactive intermediary metabolite, 1α,25(OH)2-24-oxo-16-ene-D3, in RWLeu-4 cells contributes significantly to the final expression of the enhanced biological activities ascribed to its parent analog, 1α,25(OH)2-16-ene-D3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号