首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57934篇
  免费   4595篇
  国内免费   4507篇
  67036篇
  2024年   142篇
  2023年   792篇
  2022年   1853篇
  2021年   3052篇
  2020年   2089篇
  2019年   2506篇
  2018年   2352篇
  2017年   1805篇
  2016年   2547篇
  2015年   3633篇
  2014年   4387篇
  2013年   4439篇
  2012年   5293篇
  2011年   4766篇
  2010年   2884篇
  2009年   2603篇
  2008年   2943篇
  2007年   2638篇
  2006年   2264篇
  2005年   1888篇
  2004年   1511篇
  2003年   1420篇
  2002年   1073篇
  2001年   909篇
  2000年   889篇
  1999年   810篇
  1998年   500篇
  1997年   454篇
  1996年   477篇
  1995年   422篇
  1994年   413篇
  1993年   325篇
  1992年   446篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
921.
牛蛙肥大细胞的组织化学与形态学   总被引:5,自引:0,他引:5  
目的鉴定牛蛙组织中肥大细胞的存在。方法用于肥大细胞研究的一些常规组织化学技术与形态学方法。结果牛蛙的舌、肠、肠系膜和脾中肥大细胞数量较多,少量也见于神经、心、肾、肝和皮肤等多种组织中。肥大细胞有沿血管周和神经分布的倾向。脾脏中的肥大细胞形状比较一致,呈圆形或卵圆形,而在其它部位的肥大细胞则形态多样。Bouin氏液及Carnoy氏液是牛蛙肥大细胞优良的固定液。然而,与哺乳动物的黏膜肥大细胞相似的是,中性缓冲福尔马林(NBF)固定显著的阻断了牛蛙肠黏膜肥大细胞(MMC)的染色。有趣的是,甲苯胺蓝是牛蛙肥大细胞的最佳染料,它比阿尔新蓝能很好地显示牛蛙的肥大细胞。透射电镜下证实,牛蛙肥大细胞中含有大量特征性的胞浆颗粒。肥大细胞靠近雪旺氏细胞,并可见于神经束膜间,甚至以其突起与神经束膜相连。结论通过组织化学与形态学研究证实了牛蛙组织中肥大细胞的存在,再次证实肥大细胞与外周神经之间存在密切的解剖学关系。  相似文献   
922.
Pseudomonas putida DLL-1是一株甲基对硫磷(MP)高效降解菌株,同时对MP具有趋化性。cheA基因是菌株趋化信号转导过程中负责编码组氨酸激酶的基因,为了研究菌株趋化性在农药原位降解中的作用,通过基因打靶的方式使P.putida DLL-1染色体上单拷贝的cheA基因失活,成功地获得了MP的趋化突变株P.putida DAK,突变株与野生菌株生长能力没有显著差异。通过土壤盆钵试验(MP浓度为50mg/kg),发现在灭菌与未灭菌土壤中趋化突变株对MP的降解能力低于原始出发菌株DLL-1约20%~30%,说明菌株DLL-1趋化性的丧失会减慢其对农药的降解,趋化性在农药的原位降解过程中发挥重要作用。  相似文献   
923.
Cdc37p, the p50 homolog of Saccharomyces cerevisiae, is an Hsp90 cochaperone involved in the targeting of protein kinases to Hsp90. Here we report a role for Cdc37p in osmoadaptive signalling in this yeast. The osmosensitive phenotype that is displayed by the cdc37-34 mutant strain appears not to be the consequence of deficient signalling through the high osmolarity glycerol (HOG) MAP kinase pathway. Rather, Cdc37p appears to play a role in the filamentous growth (FG) pathway, which mediates adaptation to high osmolarity parallel to the HOG pathway. The osmosensitive phenotype of the cdc37-34 mutant strain is aggravated upon the deletion of the HOG gene. We report that the hyper-osmosensitive phenotype of the cdc37-34, hog1 mutant correlates to a reduced of activity of the FG pathway. We utilized this phenotype to isolate suppressor genes such as KSS1 that encodes a MAP kinase that functions in the FG pathway. We report that Kss1p interacts physically with Cdc37p. Like Kss1p, the second suppressor that we isolated, Dse1p, is involved in cell wall biogenesis or maintenance, suggesting that Cdc37p controls osmoadapation by regulating mitogen-activated protein kinase signalling aimed at adaptive changes in cell wall organization.  相似文献   
924.
925.
Gangliosides are implicated in neuronal development processes. The regulation of ganglioside levels is closely related to the induction of neuronal cell differentiation. In this study, the relationship between ganglioside expression and neuronal cell development was investigated using an in vitro model of neural differentiation from mouse embryonic stem (mES) cells. Daunorubicin (DNR) was applied to induce the expression of gangliosides in embryoid body (EB) (4+). We observed an increase in expression of gangliosides in all stages of EBs by treatment of DNR (2microM). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GD3, GD1a, GT1b, and GQ1b increased in DNR-treated 7-day-old EB (4+) [EB (4+):7]. DNR treatment significantly increased the expression of gangliosides, especially GT1b and GQ1b in comparison to control cells. Interestingly, GQ1b co-localized with microtubule-associated protein 2 (MAP-2) expressing cells in DNR-treated EB (4+):7. The co-localization of GQ1b and MAP-2 was found in neurite-bearing cells in DNR-treated 15-day-old EB (4+) [EB (4+):15], whereas no significant expression of GQ1b and less neurite formation were observed in untreated control. Also, the expression of synaptophysin and NF200, both neuronal markers associated with neruites, was increased by DNR treatment. These results demonstrate that DNR increases expression of gangliosides, especially GQ1b, in differentiating neuronal cells. Further, neurite-bearing neuronal cell differentiation can be facilitated by DNR, possibly through the induction of gangliosides. Thus, the present data suggest that DNR is beneficial for facilitating neuronal differentiation from ES cells and among the gangliosides analyzed in the present study, GQ1b is mainly involved in neurite formation.  相似文献   
926.
Attempt was done to prepare food supplements with high content of c9, t11-CLA or t10, c12-CLA. A free acid mixture containing CLA isomers was esterified with ethanol by enzyme catalysis. Novozyme 435 and Lipase AY30 were screened, and Lipase AY30 was employed to catalyze esterification reaction because of its high fractionation efficiency. Effect of reaction conditions on total esterification was investigated, and the optimal reaction conditions were: 140 U of lipase amount, reaction temperature at 50 °C, a pH of 6.5, and molar ratio of FFA–CLA to ethanol at 1:1. Based on the studies above, experiments of esterification and purification were done, and the best fractionation efficiency was obtained when the total esterification was 37%, and the corresponding purity and recovery of c9, t11-CLA were 75.50 and 49.85%, and that of t10, c12-CLA were 72.02 and 62.32%.  相似文献   
927.
Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF_0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP_1951), and a 12-stranded β-barrel with a novel fold (V. parahaemolyticus VPA1032).  相似文献   
928.
Sucrose: sucrose 1-fructosyltransferase (1-SST) cDNA from Lactuca sativa, coding the enzyme responsible for lower degree polymers fructan biosynthesis, was cloned by RT-PCR and RACE methods. The 1-SST cDNA under the control of CaMV 35S promoter was introduced into tobacco by Agrobacterium-mediated leaf disc transformation protocol. Fructan synthesis in vitro and carbohydrate analysis showed that sense transgenic tobacco plant displayed sucrose: sucrose 1-fructosyltransferse activity. After freezing stress, significant increases in electrolyte leakage and malondialdehyde were found in the wild type and anti-sense transgenic plants, while no apparent differences were observed in sense transgenic plants. Meanwhile, water soluble carbohydrate, fructan and fructose of sense transgenic plants remarkably increased, compared with those of wild type and anti-sense plants. No significant difference was detected in superoxide dismutase activity between transgenic and wild type plants. The above results demonstrated that the expression of 1-SST gene improved the freezing resistance of transgenic tobacco plants.  相似文献   
929.
Chlamydia trachomatis is an obligate intracellular pathogen that can persist in the urogenital tract. Mechanisms by which C. trachomatis evades clearance by host innate immune responses are poorly described. CD1d is MHC-like, is expressed by epithelial cells, and can signal innate immune responses by NK and NKT cells. Here we demonstrate that C. trachomatis infection down-regulates surface-expressed CD1d in human penile urethral epithelial cells through proteasomal degradation. A chlamydial proteasome-like activity factor (CPAF) interacts with the CD1d heavy chain, and CPAF-associated CD1d heavy chain is then ubiquitinated and directed along two distinct proteolytic pathways. The degradation of immature glycosylated CD1d was blocked by the proteasome inhibitor lactacystin but not by MG132, indicating that degradation was not via the conventional proteasome. In contrast, the degradation of non-glycosylated CD1d was blocked by lactacystin and MG132, consistent with conventional cellular cytosolic degradation of N-linked glycoproteins. Immunofluorescent microscopy confirmed the interruption of CD1d trafficking to the cell surface, and the dislocation of CD1d heavy chains into both the cellular cytosol and the chlamydial inclusion along with cytosolic CPAF. C. trachomatis targeted CD1d toward two distinct proteolytic pathways. Decreased CD1d surface expression may help C. trachomatis evade detection by innate immune cells and may promote C. trachomatis persistence.  相似文献   
930.
谷氨酸脱羧酶与Ⅰ型糖尿病发病机制   总被引:2,自引:0,他引:2  
谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)与Ⅰ型糖尿病(type 1 diabetes,T1DM)的发病有很大关系,被认为是Ⅰ型糖尿病发病的自身免疫启动靶抗原。谷氨酸脱羧酶对于Ⅰ型糖尿病的预测、诊断、预防和治疗都有很大应用价值。该文阐述了谷氨酸脱羧酶的最新研究进展,以及谷氨酸脱羧酶与Ⅰ型糖尿病自身免疫发病机制的联系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号