首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   44篇
  国内免费   17篇
  545篇
  2024年   2篇
  2023年   15篇
  2022年   42篇
  2021年   58篇
  2020年   38篇
  2019年   33篇
  2018年   45篇
  2017年   18篇
  2016年   23篇
  2015年   33篇
  2014年   26篇
  2013年   25篇
  2012年   30篇
  2011年   23篇
  2010年   12篇
  2009年   11篇
  2008年   16篇
  2007年   13篇
  2006年   11篇
  2005年   8篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
排序方式: 共有545条查询结果,搜索用时 15 毫秒
51.
Yellow-flowering species are unique in the genus Camellia not only for their bright yellow pigments but also the health-improving substances in petals. However, little is known regarding the biosynthesis pathways of pigments and secondary metabolites. Here, we performed comparative genomics studies in two yellow-flowered species of the genus Camellia with distinctive flowering periods. We obtained 112,190 and 89,609 unigenes from Camellia nitidissima and Camellia chuongtsoensis, respectively, and identified 9547 gene family clusters shared with various plant species and 3414 single-copy gene families. Global gene expression analysis revealed six comparisons of differentially expressed gene sets in different developmental stages of floral bud. Through the identification of orthologous pairs, conserved and specific differentially expressed genes (DEGs) between species were compared. Functional enrichment analysis suggested that the gibberellin (GA) biosynthesis pathway might be related to the alteration of flowering responses. Furthermore, the expression patterns of secondary metabolism pathway genes were analyzed between yellow- and red-flowered Camellias. We showed that the key enzymes involved in glycosylation of flavonoids displayed differential expression patterns, indicating that the direct glycosylation of flavonols rather than anthocyanins was pivotal to coloration and health-improving metabolites in the yellow Camellia petals. Finally, the gene family analysis of UDP-glycosyltransferases revealed an expansion of group C members in C. nitidissima. Through comparative genomics analysis, we demonstrate that changes of gene expression and gene family members are critical to the variation of natural traits. This work provides valuable insights into the molecular regulation of trait adaptations of floral pigmentation and flowering timing.  相似文献   
52.
53.
A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size?primary productivity functions based on the Chinese dataset can predict productivity in North America and vice‐versa. In addition to advancing understanding of the relationship between a climate‐driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo‐primary productivity of woody ecosystems.  相似文献   
54.
To accommodate the decreasing lithium resource and ensure continuous development of energy storage industry, sodium‐based batteries are widely studied to inherit the next generation of energy storage devices. In this work, a novel Na super ionic conductor type KTi2(PO4)3/carbon nanocomposite is designed and fabricated as sodium storage electrode materials, which exhibits considerable reversible capacity (104 mAh g?1 under the rate of 1 C with flat voltage plateaus at ≈2.1 V), high‐rate cycling stability (74.2% capacity retention after 5000 cycles at 20 C), and ultrahigh rate capability (76 mAh g?1 at 100 C) in sodium ion batteries. Besides, the maximum ability for sodium storage is deeply excavated by further investigations about different voltage windows in half and full sodium ion cells. Meanwhile, as cathode material in sodium‐magnesium hybrid batteries, the KTi2(PO4)3/carbon nanocomposite also displays good electrochemical performances (63 mAh g?1 at the 230th cycle under the voltage window of 1.0–1.9 V). The results demonstrate that the KTi2(PO4)3/carbon nanocomposite is a promising electrode material for sodium ion storage, and lay theoretical foundations for the development of new type of batteries.  相似文献   
55.
The initiation of angiogenesis can mark the transition from tumor dormancy to active growth and recurrence. Mechanisms that regulate recurrence in human cancers are poorly understood, in part because of the absence of relevant models. The induction of ARHI (DIRAS3) induces dormancy and autophagy in human ovarian cancer xenografts but produces autophagic cell death in culture. The addition of VEGF to cultures maintains the viability of dormant autophagic cancer cells, thereby permitting active growth when ARHI is downregulated, which mimics the “recurrence” of growth in xenografts. Two inducible ovarian cancer cell lines, SKOv3-ARHI and Hey-ARHI, were used. The expression level of angiogenesis factors was evaluated by real-time PCR, immunohistochemistry, immunocytochemistry and western blot; their epigenetic regulation was measured by bisulfite sequencing and chromatin immunoprecipitation. Six of the 15 angiogenesis factors were upregulated in dormant cancer cells (tissue inhibitor of metalloproteinases-3, TIMP3; thrombospondin-1, TSP1; angiopoietin-1; angiopoietin-2; angiopoietin-4; E-cadherin, CDH1). We found that TIMP3 and CDH1 expression was regulated epigenetically and was related inversely to the DNA methylation of their promoters in cell cultures and in xenografts. Increased H3K9 acetylation was associated with higher TIMP3 expression in dormant SKOv3-ARHI cells, while decreased H3K27me3 resulted in the upregulation of TIMP3 in dormant Hey-ARHI cells. Elevated CDH1 expression during dormancy was associated with an increase in both H3K4me3 and H3K9Ac in two cell lines. CpG demethylating agents and/or histone deacetylase inhibitors inhibited the re-growth of dormant cancer cells, which was associated with the re-expression of anti-angiogenic genes. The expression of the anti-angiogenic genes TIMP3 and CDH1 is elevated during dormancy and is reduced during the transition to active growth by changes in DNA methylation and histone modification.  相似文献   
56.
57.
Perilipin 1 (Plin1) localizes at the surface of lipid droplets to regulate triglyceride storage and hydrolysis in adipocytes. Plin1 defect leads to low adiposity in mice and partial lipodystrophy in human. This study investigated the roles of Plin1 in adipocyte differentiation. Plin1 null (-/-) mice showed plenty of multilocular adipocytes and small unilocular adipocytes in adipose tissue, along with lack of a subpopulation of adipose progenitor cells capable of in vivo adipogenesis and along with downregulation of adipogenic pathway. Before initiation of differentiation, adipose stromal-vascular cells (SVCs) from Plin1-/- mice already accumulated numerous tiny lipid droplets, which increased in number and size during the first 12-h induction but thereafter became disappeared at day 1 of differentiation. The adipogenic signaling was dysregulated despite protein level of PPARγ was near normal in Plin1-/- SVCs like in Plin1-/- adipose tissue. Heterozygous Plin1+/- SVCs were able to develop lipid droplets, with both the number and size more than in Plin1-/- SVCs but less than in Plin1+/+ SVCs, indicating that Plin1 haploinsufficiency accounts for attenuated adipogenesis. Aberrant lipid droplet growth and differentiation of Plin1-/- SVCs were rescued by adenoviral Plin1 expression and were ameliorated by enhanced or prolonged adipogenic stimulation. Our finding suggests that Plin1 plays an important role in adipocyte differentiation and provides an insight into the pathology of partial lipodystrophy in patients with Plin1 mutation.  相似文献   
58.
Evolutionarily conserved SR proteins (serine/arginine-rich proteins) are important factors for alternative splicing and their activity is modulated by SRPKs (SR protein-specific kinases). We previously identified Dsk1p (dis1-suppressing protein kinase) as the orthologue of human SRPK1 in fission yeast. In addition to its similarity of gene structure to higher eukaryotes, fission yeast Schizosaccharomyces pombe is a unicellular eukaryotic organism in which alternative splicing takes place. In the present study, we have revealed for the first time that SR proteins, Srp1p and Srp2p, are the in vivo substrates of Dsk1p in S. pombe. Moreover, the cellular localization of the SR proteins and Prp2p splicing factor is dependent on dsk1(+): Dsk1p is required for the efficient nuclear localization of Srp2p and Prp2p, while it promotes the cytoplasmic distribution of Srp1p, thereby differentially influencing the destinations of these proteins in the cell. The present study offers the first biochemical and genetic evidence for the in vivo targets of the SRPK1 orthologue, Dsk1p, in S. pombe and the significant correlation between Dsk1p-mediated phosphorylation and the cellular localization of the SR proteins, providing information about the physiological functions of Dsk1p. Furthermore, the results demonstrate that the regulatory function of SRPKs in the nuclear targeting of SR proteins is conserved from fission yeast to human, indicating a general mechanism of reversible phosphorylation to control the activities of SR proteins in RNA metabolism through cellular partitioning.  相似文献   
59.
Mounting evidence has indicated that engaging in extrapair copulations (EPCs) might be maladaptive or detrimental to females. It is unclear why such nonadaptive female behavior evolves. In this study, we test two hypotheses about the evolution of female EPC behavior using population genetic models. First, we find that both male preference for allocating extra effort to seek EPCs and female pursuit behavior without costs can be maintained and remain polymorphic in a population via frequency‐dependent selection. However, both behaviors cannot evolve when females with pursuit behavior suffer from a decline in male parental care. Second, we present another novel way in which female pursuit behavior can evolve; indirect selection can act on this behavior through a ratchet‐like mechanism involving oscillating linkage disequilibria between the target EPC pursuit locus and two other loci determining male mate choice and a female sexual signal. Although the overall positive force of such indirect selection is relatively weak, our results suggest that it may still play a role in promoting the evolution of female EPC behavior when this behavior is nonadaptive (i.e., it is neutral) or only somewhat maladaptive (e.g., males only occasionally lower parental care when their mates pursue EPCs).  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号