首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14988篇
  免费   1159篇
  国内免费   1124篇
  2024年   18篇
  2023年   153篇
  2022年   378篇
  2021年   820篇
  2020年   493篇
  2019年   604篇
  2018年   626篇
  2017年   524篇
  2016年   628篇
  2015年   898篇
  2014年   1084篇
  2013年   1210篇
  2012年   1411篇
  2011年   1257篇
  2010年   779篇
  2009年   684篇
  2008年   755篇
  2007年   630篇
  2006年   612篇
  2005年   498篇
  2004年   430篇
  2003年   335篇
  2002年   345篇
  2001年   313篇
  2000年   255篇
  1999年   251篇
  1998年   165篇
  1997年   134篇
  1996年   135篇
  1995年   126篇
  1994年   139篇
  1993年   96篇
  1992年   96篇
  1991年   72篇
  1990年   66篇
  1989年   58篇
  1988年   56篇
  1987年   32篇
  1986年   33篇
  1985年   20篇
  1984年   23篇
  1983年   12篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1933年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
831.
Pseudomonas amygdali pv. lachrymans is currently of important plant pathogenic bacteria that causes cucumber angular leaf spot worldwide. The pathogen has been studied for its roles in pathogenicity and plant inheritance resistance. To further delineate traits critical to virulence, invasion and survival in the phyllosphere, we reported the first complete genome of P. amygdali pv. lachrymans NM002. Analysis of the whole genome in comparison with three closely-related representative pathovars of P. syringae identified the conservation of virulence genes, including flagella and chemotaxis, quorum-sensing systems, two-component systems, and lipopolysaccharide and antiphagocytosis. It also revealed differences of invasion determinants, such as type III effectors, phytotoxin (coronatine, syringomycin and phaseolotoxin) and cell wall-degrading enzyme, which may contribute to infectivity. The aim of this study was to derive genomic information that would reveal the probable molecular mechanisms underlying the virulence, infectivity and provide a better understanding of the pathogenesis of the P. syringae pathovars.  相似文献   
832.
Chronic cystitis is characterized by the hyperplasia and fibrosis of the bladder wall as well as attenuated compliance of the bladder. To further unravel its underlying molecular mechanism, the role of NFκB-JMJD3 signaling pathway in cystitis induced bladder fibrosis was investigated. Jmjd3 and Col1/3 expression was detected in a cystitis mouse model that was developed by intraperitoneal injection of cyclophosphamide (CYP). Human bladder smooth muscle cells (hBSMCs) were stimulated in vitro with lipopolysaccharide (LPS), and the cell proliferation and collagen accumulation were detected using EdU, CCK8, flow cytometry, qPCR, western blotting and immunofluorescence assays. Furthermore, the effects of NFκB and JMJD3 on cell proliferation and collagen accumulation were investigated using its selective antagonists, JSH23 and GSK-J4, respectively. CYP induced cystitis significantly increased Jmjd3, Col1 and Col3 expression in the bladder muscle cells. Furthermore, LPS stimulation markedly activated NFκB signaling and elevated JMJD3 expression in hBSMCs, and the activation of NFκB-JMJD3 signaling significantly promoted cell proliferation and collagen accumulation by upregulating CCND1 and COL1/3 expression, respectively. Our study reveals the critical role of NFκB-JMJD3 signaling in cystitis induced bladder reconstruction by regulating hBSMC proliferation and extracellular matrix (ECM) deposition, and these findings provide an avenue for effective treatment of patients with cystitis.  相似文献   
833.
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4?/? mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4?/? mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4?/? mice, yet fibroblasts from Mcpt4?/? mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.  相似文献   
834.
Plant Molecular Biology Reporter - Apiculus color of grain is an important trait which is used as a morphological marker in rice (Oryza sativa. L). In the present study, the purple apiculus mutant...  相似文献   
835.
Metformin, a first-line antidiabetic drug, has been reported with anticancer activities in many types of cancer. However, its molecular mechanisms remain largely unknown. As a member of inhibitor of apoptosis proteins, survivin plays an important role in the regulation of cell death. In the present study, we investigated the role of survivin in metformin-induced anticancer activity in non–small cell lung cancer in vitro. Metformin mainly induced apoptotic cell death in A549 and H460 cell lines. It remarkably suppressed the expression of survivin, decreased the stability of this protein, then promoted its proteasomal degradation. Moreover, metformin greatly suppressed protein kinase A (PKA) activity and induced its downstream glycogen synthase kinase 3β (GSK-3β) activation. PKA activators, both 8-Br-cAMP and forskolin, significantly increased the expression of survivin. Consistently both GSK-3β inhibitor LiCl and siRNA restored the expression of survivin in lung cancer cells. Furthermore, metformin induced adenosine 5′-monophosphate-activated protein kinase (AMPK) activation. Suppression of the activity of AMPK with Compound C reversed the degradation of survivin induced by metformin, and meanwhile, restored the activity of PKA and GSK-3β. These results suggest that metformin kills lung cancer cells through AMPK/PKA/GSK-3β-axis–mediated survivin degradation, providing novel insights into the anticancer effects of metformin.  相似文献   
836.
Zbed3, a BED finger domain-containing protein was found to promote cancer proliferation by regulating β-catenin expression through interacting with Axin. But whether and how BED finger domain function in regulating cancer proliferation is unknown. We constructed five mutants of Zbed3, which lacks the Axin-Zbed3 binding site, and the 43 to 52, 69 to 77, 87 to 92, and 97 to 104 sequences in BED finger domain, respectively and named them as Z-A, Z1, Z2, Z3, and Z4. Transfection of both wild-type of Zbed3 and the mutants Z1, Z3, and Z4 (P < 0.05), but not Z2 (P > 0.05) significantly upregulated β-catenin expression in NCI-H1299 cells. Overexpression of both wild-type of Zbed3 and the mutants Z1, Z3, and Z4 (P < 0.05) but not Z2 (P > 0.05) significantly promoted cancer cell proliferation and invasion. The ability of proliferation (P < 0.05) but not invasion (P < 0.05) of cancer cells transfected with Z1 and Z4 was significantly lower than that with wild-type Zbed3 and Z3. Overexpression of wild-type Zbed3 (P < 0.05) but not the mutant Z-A, which lacks the binding site with Axin and Z2 (P > 0.05) significantly upregulated the interaction of Axin and Zbed3, β-catenin expression and the activity of Wnt signaling. Both overexpression of wild-type Zbed3 and the mutant Z1 and Z4 significantly upregulated the activity of Wnt signaling and promoted cancer cell proliferation (P < 0.05) but only overexpression of wild-type Zbed3 (P < 0.05), but not the mutant Z1, and Z4 (P > 0.05), significantly upregulated the expression of proliferating cell nuclear antigen (PCNA) in NCI-H1299 cells. These results indicate that Zbed3 may promote lung cancer cell proliferation through regulating PCNA expression besides regulating β-catenin expression and BED finger domain can impact on this function.  相似文献   
837.
Zhang  Yi  Li  Shuo  Liang  Ying  Zhao  Hailiang  Hou  Leiping  Shi  Yu  Ahammed  Golam Jalal 《Journal of Plant Growth Regulation》2019,38(1):357-357
Journal of Plant Growth Regulation - The original version of this article unfortunately contained errors in two authors' names. The given and family names of the authors were incorrectly...  相似文献   
838.
839.
Ischemic heart disease (IHD) is the most occurring cardiovascular-associated disease, which is a primary leading cause of cardiac disability and death worldwide. Myocardial ischemia/reperfusion injury (MI/RI) has been linked to IHD-induced cardiomyocytes apoptosis and tissue damage. The clinical studies have indicated that pathophysiologic mechanisms of MI/RI are associated with reactive oxygen species generation, calcium overload, energy metabolism disorder, neutrophil infiltration, and others. However, the genetic mechanism of MI/RI remains unclear. In this study, we successfully established the reproducing abnormal heart observed in rat, of IHD-induced MI/RI post operation. By using these rats, we illustrated that expression of miR-181b-5p was increased not only in both hypoxia/reoxygenation-cultured H9C2 but also heart of myocardial ischemia/reperfusion (MI/R) rat. Suppression of the miR-181b-5p cardiomyocytes apoptosis and rescued myocardial infarction. Additionally, our data indicated that miR-181b-5p negatively regulates the expression of AKT3 and PIK3R3 through directly binding with its 3′-untranslated region. More importantly, suppression of miR-181b-5p protects the cardiomyocytes apoptosis and tissue damage from MI/R via regulation of PIK3R3 and AKT3. Hence, our study indicates that miR-181b-5p is essential for MI/RI via regulation of PI3K/Akt signaling pathway and could be a potential therapeutic target in IHD.  相似文献   
840.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号