首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91940篇
  免费   6744篇
  国内免费   6277篇
  2024年   128篇
  2023年   1100篇
  2022年   2545篇
  2021年   4826篇
  2020年   3191篇
  2019年   4016篇
  2018年   3957篇
  2017年   2865篇
  2016年   4052篇
  2015年   5841篇
  2014年   6887篇
  2013年   7250篇
  2012年   8493篇
  2011年   7739篇
  2010年   4482篇
  2009年   4186篇
  2008年   4775篇
  2007年   4146篇
  2006年   3532篇
  2005年   2820篇
  2004年   2312篇
  2003年   2105篇
  2002年   1698篇
  2001年   1471篇
  2000年   1342篇
  1999年   1407篇
  1998年   819篇
  1997年   892篇
  1996年   813篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   682篇
  1991年   535篇
  1990年   455篇
  1989年   331篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   124篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
Glycogenin is a self-glucosylating protein involved in the initiation reactions of glycogen synthesis. Initiation occurs in two stages, requiring first the covalent attachment of a glucose residue to Tyr-194 of glycogenin and then elongation to form an oligosaccharide chain. The latter reaction is known to be catalyzed by glycogenin itself. The glycogenin sequence determined from the protein by Campbell and Cohen (Campbell, D. G., and Cohen, P. (1989) Eur. J. Biochem. 185, 119-125) was used to design oligonucleotide probes to screen a rabbit muscle lambda gt11 library. A cDNA was isolated that predicted an amino acid sequence identical to that of Campbell and Cohen, except that Cys residues replaced Ser-88 and Leu-97. Northern analysis indicated a strongly hybridizing message of 1.8 kilobases, present in most tissues including skeletal muscle, but much weaker in kidney and scarcely detectable in liver. A much weaker 3-kilobase message was also detected in muscle. Polymerase chain reaction was used to isolate DNA fragments encoding a portion of glycogenin from rat and cow. The sequence of this segment was > 90% identical at the amino acid level across the three species, indicating that glycogenin is a highly conserved protein. Using the pET-8c vector, the glycogenin protein was expressed in Escherichia coli. Incubation of the recombinant glycogenin with UDP-[14C]glucose and Mn2+ resulted in labeling of the glycogenin protein, indicating that the recombinant glycogenin was enzymatically active and capable of self-glucosylation. Furthermore, after incubation with UDP-glucose, the recombinant glycogenin could serve as a substrate for glycogen synthase, leading to the production of high M(r) polysaccharide. Therefore, production of functional glycogenin did not require the intervention of any other mammalian protein.  相似文献   
953.
It has been well established that T cell tolerance to self Ag occurs primarily via clonal deletion of immature thymocytes in the thymus. Evidence also exists that there are additional mechanisms operative on mature T cells for establishing and maintaining tolerance in the periphery. To follow the fate of mature Ag-specific T cells in vivo, we used female transgenic mice, which contain a large population of male H-Y Ag-specific T cells that can be identified by immunostaining with mAb directed against CD8 and the transgenic TCR. H-Y Ag was introduced into these mice by injecting Ag-bearing male lymphocytes using conditions known to induce CTL precursor response reduction. The number of Ag-reactive CD8+ transgenic T cells in the periphery started to decrease after 2 days of in vivo exposure to male Ag. Decline was maximum (up to 80% of total) by 7 days, and stayed at this level for at least 6 wk. CD4+ cells and those CD8+ cells that did not carry the transgenic TCR were not affected. Most or all of the remaining Ag-reactive CD8+ cells in the periphery were fully responsive when stimulated by male Ag in vitro. Maturation of transgenic T cells in the thymus of injected mice remained the same as that of control animals. Our data provide direct evidence that mature Ag-reactive CD8+ cells are susceptible to clonal deletion in the periphery when exposed to the Ag in vivo. These findings suggest the presence of two types of APC in the periphery: stimulatory APC (e.g., macrophages and dendritic cells) required for initiating an active immune response; and functionally deleting APC (or veto cells) capable of deleting mature T lymphocytes that recognize Ag presented on their surface. Functionally deleting APC that present self Ag to peripheral T cells may provide a fail-safe mechanism against autoreactive cells that escaped deletion during differentiation in the thymus.  相似文献   
954.
Our previous studies showed that the common maize (Zea mays L.) sperm isolation medium (Brewbaker and Kwack salts in 0.44 m sucrose without buffering) caused cell lysis in vitro. In an attempt to remedy this situation, 6 sugars, 10 buffers, 5 pH values, and 3 membrane protective agents were screened to improve longevity and viability of isolated Zea mays sperm cells as estimated by hemacytometry and flow cytometry. Use of 0.55 m galactose in the isolation solution increased sperm yield by 2.5-fold compared with sucrose, and suspension of isolated sperm cells in the galactose solution gave the best longevity among the six sugars. Buffering the galactose solution with 2 mm 2-(N-morpholino)ethanesulfonic acid significantly improved longevity, whereas other buffers had no effect or decreased the longevity and/or viability. Among the five pH values tested (5.0, 6.0, 6.7, 7.0, and 8.0), pH 6.7 appeared to be optimal for maintenance of both longevity and viability. Screening of membrane protectants showed that cysteine caused a rapid decrease in cell viability and increased lysis, whereas dithiothreitol increased the cell numbers but lowered their viability. Addition of 0.1% bovine serum albumin increased cell numbers and viability, and about 70% of the cells remained viable after 72 h of suspension. Cell longevity and viability were also improved in 0.44 m sucrose when the solution was conditioned with 2-(N-morpholino)ethanesulfonic acid and bovine serum albumin. Use of 2-(N-morpholino)ethanesulfonic acid and bovine serum albumin inthe isolation and suspension medium significantly improved the viability and longevity of sperm cells isolated from Zea mays pollen.  相似文献   
955.
Okadaic acid blocks the cell cycle at early mitosis in suspensioncultures of Nicotiana plumbaginifolia. Nuclear DNA content wasmeasured in treated cells by propidium iodide staining, fluorescencemicroscopy and quantitative analysis of the video image. NuclearDNA levels in inhibited populations showed that cells continuedto progress from G1 phase through S phase and accumulated inG2 phase. Arrested cells in 12 µM okadaic acid had a condensedchromatin configuration and persisting nucleolus similar tonormal early prophase. Progress to early prophase was also indicatedby development of the preprophase band (PPB) of microtubules.PPB microtubules disassembled in 95% of the inhibited cellswith the same timing as in control cells, although the treatedcells did not progress to prometaphase mitotic spindle assemblythat normally precedes PPB breakdown, therefore okadaic acidcan disrupt the normal dependence of PPB disassembly on prometaphasenuclear events and indicates that the normal signal for disassemblymay be an increase in phosphorylation of PPB associated proteins.Okadaic acid at 12 µM caused increased levels of phosphorylatedproteins, in particular those of 108 kDa, 49 kDa, 36 kDa, 33kDa, 31 kDa, but more complex effects on some phosphoproteinswere indicated by reductions in a phosphoprotein of 41 kDa andone of approximately 190 kDa. It is concluded that the mitoticphase of the plant cell cycle is more sensitive than precedingcycle phases to the disruption of protein phosphorylation levelsby okadaic acid and it is proposed that the inhibitor blocksdivision by interfering with essential changes in the phosphorylationstate of proteins at mitosis. This conclusion is discussed inrelation to genetical and biochemical evidence that proteinkinases and phosphatases are involved in the cell division ofplants and other eukaryotes. (Received November 26, 1991; Accepted April 20, 1992)  相似文献   
956.
Root nodule development: origin, function and regulation of nodulin genes   总被引:3,自引:0,他引:3  
The symbiotic root nodule, an organ formed on leguminous plants, is a product of successful interactions between the host plant and the soil bacteria, Rhizobium spp. Plant hormones play an important role in the genesis of this organ. The hormonal balance appears to be modulated by the signals produced by bacteria. Many host genes induced during nodule organogenesis and the symbiotic state have been identified and characterized from several legumes. These genes encode nodule-specific proteins (nodulins) which perform diverse functions in root nodule development and metabolism. Formation of a subcellular compartment housing the bacteria is essential to sustain the symbiotic state, and several nodulins are involved in maintaining the integrity and function of this compartment. The bacteroid enclosed in the perbacteroid membrane behaves as an 'organelle,'completely dependent on the host for all its requirements for carbon, nitrogen and other essential elements. Thus it seems likely that the nodulins in the peribacteroid membrane perform specific transport functions. While the function of a few other nodulins is known (e.g. nodulin-100, nodulin-35), a group of uncharacterized nodulins exists in soybean root nodules. These nodulins share structural similarities and seem to have been derived from a common ancestor. Induction of nodulin genes occurs prior to and independent of nitrogen fixation, and thus is a prelude to symbiosis. Although some of the early nodulin genes are induced prior to or during infection, induction of late nodulins requires endocytotic release of bacteria.  相似文献   
957.
Sperm cells have been isolated from pollen of maize (Zea mays L.) and purified with Percoll density centrifugation. Their flow cytometric characteristics were determined on a FACScan flow cytometer with the fluorescent dyes, fluorescein diacetate and propidium iodide. Freshly isolated sperm cells appeared as a dot cluster on the forward scatter and side scatter dot plot. This dot cluster contained 85 to 95% of the 10 thousand counts collected. More than 98% of cells from the cluster were fluorescein diacetate positive, with no propidium iodide positivity, indicating high cell viability. After 5 hours in 15% (w/v) sucrose at room temperature (23°C), scattering properties, cell number, and percentage of fluorescein diacetate-positive cells remained the same. In contrast, Brewbaker and Kwack salts in 15% sucrose resulted in the emergence of a new cell population, as well as a decrease in cell number at 5 hours. Further investigations with individual components of the Brewbaker and Kwack salts showed that calcium was mainly responsible for the deleterious effects. These results demonstrate the utility of flow cytometry as a tool to determine viability and to monitor morphological changes of plant sperm cells and to challenge current views on the ability of Brewbaker and Kwack salts to maintain viability of isolated sperm cells.  相似文献   
958.
The β-carboxylic group in N-dialkylphosphorylated aspartic acid has an activating effect that gives rise to peptides, esters, and ester exchange at the phosphoryl group. In contrast, the γ-carboxylic group of N-alkylphosphorylated glutamic acid has a much smaller effect. Some of the self-activating products were isolated and many model compounds were synthesized to study the novel activating effect of the β-carboxylic group. Mixed anhydride intermediates derived from α-carboxylphosphoryl and β-carboxylphosphoryl groups are proposed for the self-activation mechanism.  相似文献   
959.
Y Xiong  H Zhang  D Beach 《Cell》1992,71(3):505-514
Human cyclin D1 has been associated with a wide variety of proliferative diseases but its biochemical role is unknown. In diploid fibroblasts we find that cyclin D1 is complexed with many other cellular proteins. Among them are protein kinase catalytic subunits CDK2, CDK4 (previously called PSK-J3), and CDK5 (also called PSSALRE). In addition, polypeptides of 21 kd and 36 kd are identified in association with cyclin D1. We show that the 36 kd protein is the proliferating cell nuclear antigen, PCNA. Cyclin D3 also associates with multiple protein kinases, p21 and PCNA. It is proposed that there exists a quaternary complex of D cyclin, CDK, PCNA, and p21 and that many combinatorial variations (cyclin D1, D3, CDK2, 4, and 5) may assemble in vivo. These findings link a human putative G1 cyclin that is associated with oncogenesis with a well-characterized DNA replication and repair factor.  相似文献   
960.
During the course of screening for new antitumor antibiotics, a new anthracycline antibiotic--aclacinomycin A was separated from the broth and mycelium of Streptomyces AC-57. The strain AC-57 was isolated from the soil collected in the Shanghai suburbs. According to its culture and physiological characteristics the producer was identified as Str. galilaeus AC-57. The broth and mycelium were extracted and treated with solvents as usual way. The aclacinomycin A was separated by silica-gel column chromatography eluted with chrolo-form-methanol. Aclacinomycin A, its aglycone and sugar components were identified by comparison of their physico-chemical and spectral data (MS, UV, IR, 1H-NMR, and 13C-NMR) with authentic compound, purified from the market sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号