首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11519篇
  免费   1107篇
  国内免费   39篇
  2024年   13篇
  2023年   52篇
  2022年   150篇
  2021年   280篇
  2020年   162篇
  2019年   246篇
  2018年   293篇
  2017年   265篇
  2016年   391篇
  2015年   654篇
  2014年   697篇
  2013年   823篇
  2012年   1059篇
  2011年   1010篇
  2010年   708篇
  2009年   631篇
  2008年   770篇
  2007年   776篇
  2006年   659篇
  2005年   598篇
  2004年   597篇
  2003年   481篇
  2002年   469篇
  2001年   78篇
  2000年   74篇
  1999年   97篇
  1998年   100篇
  1997年   70篇
  1996年   48篇
  1995年   41篇
  1994年   42篇
  1993年   31篇
  1992年   25篇
  1991年   25篇
  1990年   20篇
  1989年   25篇
  1988年   16篇
  1987年   21篇
  1986年   16篇
  1985年   16篇
  1984年   17篇
  1983年   15篇
  1982年   12篇
  1981年   13篇
  1979年   7篇
  1977年   8篇
  1975年   6篇
  1974年   14篇
  1973年   5篇
  1967年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The population abundance, infestation, and harmful effects of the aphid Aphis craccivora Koch (Hemiptera: Aphididae) were studied on four bean plant species, namely the country bean (Lablab purpureus var. BARI Seem 1), the yard‐long bean (Vigna sesquipedalis var. BARI Borboti 1), the hyacinth bean (Dolichos lablab var. BARI Seem 6), and the bush bean (Phaseolus vulgaris var. BARI Jar Seem 3). Aphid abundance and infestation on the leaves, inflorescences, flowers, and pods differed significantly among the bean plant species, with P. vulgaris and V. sesquipedalis having the lowest and highest results, respectively. Aphid severity grade and the number of trichomes of the bean plant species were negatively correlated. The duration of the growth stages among the bean plant species were significantly different, with V. sesquipedalis having the shortest durations. Aphid abundance and infestation significantly affected the physical and phytochemical characteristics of the bean plant species. The highest reduction of number of leaves, flower inflorescences, and pod inflorescences per plant, and moisture and chlorophyll content in the leaves was found in L. purpureus. The results for V. sesquipedalis revealed the highest reduction in plant height, seed weight, and pH, while those of D. lablab showed the highest reduction in leaf area.  相似文献   
92.
Pseudomonas putida has emerged as a promising host for the production of chemicals and materials thanks to its metabolic versatility and cellular robustness. In particular, P. putida KT2440 has been officially classified as a generally recognized as safe (GRAS) strain, which makes it suitable for the production of compounds that humans directly consume, including secondary metabolites of high importance. Although various tools and strategies have been developed to facilitate metabolic engineering of P. putida, modification of large genes/clusters essential for heterologous expression of natural products with large biosynthetic gene clusters (BGCs) has not been straightforward. Recently, we reported a RecET-based markerless recombineering system for engineering P. putida and demonstrated deletion of multiple regions as large as 101.7 kb throughout the chromosome by single rounds of recombineering. In addition, development of a donor plasmid system allowed successful markerless integration of heterologous BGCs to P. putida chromosome using the recombineering system with examples of – but not limited to – integrating multiple heterologous BGCs as large as 7.4 kb to the chromosome of P. putida KT2440. In response to the increasing interest in our markerless recombineering system, here we provide detailed protocols for markerless gene knockout and integration for the genome engineering of P. putida and related species of high industrial importance.  相似文献   
93.
Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3–98.8% mass loss while decaying in common garden ‘rotplots’ in a temperate oak-hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1–5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co-occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.  相似文献   
94.
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function . Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.  相似文献   
95.
96.
The key to understanding the evolutionary origin and modification of phenotypic traits is revealing the responsible underlying developmental genetic mechanisms. An important organismal trait of ray‐finned fishes is the gas bladder, an air‐filled organ that, in most fishes, functions for buoyancy control, and is homologous to the lungs of lobe‐finned fishes. The critical morphological difference between lungs and gas bladders, which otherwise share many characteristics, is the general direction of budding during development. Lungs bud ventrally and the gas bladder buds dorsally from the anterior foregut. We investigated the genetic underpinnings of this ventral‐to‐dorsal shift in budding direction by studying the expression patterns of known lung genes (Nkx2.1, Sox2, and Bmp4) during the development of lungs or gas bladder in three fishes: bichir, bowfin, and zebrafish. Nkx2.1 and Sox2 show reciprocal dorsoventral expression patterns during tetrapod lung development and are important regulators of lung budding; their expression during bichir lung development is conserved. Surprisingly, we find during gas bladder development, Nkx2.1 and Sox2 expression are inconsistent with the hypothesis that they regulate the direction of gas bladder budding. Bmp4 is expressed ventrally during lung development in bichir, akin to the pattern during mouse lung development. During gas bladder development, Bmp4 is not expressed. However, Bmp16, a paralogue of Bmp4, is expressed dorsally in the developing gas bladder of bowfin. Bmp16 is present in the known genomes of Actinopteri (ray‐finned fishes excluding bichir) but absent from mammalian genomes. We hypothesize that Bmp16 was recruited to regulate gas bladder development in the Actinopteri in place of Bmp4.  相似文献   
97.
Feng  Yan  Hu  Zheng-Da  Balmakou  Aliaksei  Khakhomov  Sergei  Semchenko  Igor  Wang  Jicheng  Liu  Dongdong  Sang  Tian 《Plasmonics (Norwell, Mass.)》2020,15(6):1869-1874
Plasmonics - Graphene-based hyperbolic metamaterials are well known for their optical anisotropy, high absorption of electromagnetic radiation, and low energy loss. We proposed a novel multilayer...  相似文献   
98.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   
99.
BackgroundLymphatic filariasis (LF) is targeted for elimination in Sierra Leone. Epidemiological coverage of mass drug administration (MDA) with ivermectin and albendazole had been reported >65% in all 12 districts annually. Eight districts qualified to implement transmission assessment survey (TAS) in 2013 but were deferred until 2017 due to the Ebola outbreak (2014–2016). In 2017, four districts qualified for conducting a repeat pre-TAS after completing three more rounds of MDA and the final two districts were also eligible to implement a pre-TAS.Methodology/Principal findingsFor TAS, eight districts were surveyed as four evaluation units (EU). A school-based survey was conducted in children aged 6–7 years from 30 clusters per EU. For pre-TAS, one sentinel and one spot check site per district (with 2 spot check sites in Bombali) were selected and 300–350 persons aged 5 years and above were selected. For both surveys, finger prick blood samples were tested using the Filariasis Test Strips (FTS).For TAS, 7,143 children aged 6–7 years were surveyed across four EUs, and positives were found in three EUs, all below the critical cut-off value for each EU. For the repeat pre-TAS/pre-TAS, 3,994 persons over five years of age were surveyed. The Western Area Urban had FTS prevalence of 0.7% in two sites and qualified for TAS, while other five districts had sites with antigenemia prevalence >2%: 9.1–25.9% in Bombali, 7.5–19.4% in Koinadugu, 6.1–2.9% in Kailahun, 1.3–2.3% in Kenema and 1.7% - 3.7% in Western Area Rural.Conclusions/SignificanceEight districts in Sierra Leone have successfully passed TAS1 and stopped MDA, with one more district qualified for conducting TAS1, a significant progress towards LF elimination. However, great challenges exist in eliminating LF from the whole country with repeated failure of pre-TAS in border districts. Effort needs to be intensified to achieve LF elimination.  相似文献   
100.
Xenotransplantation has been considered an alternative to the moderate shortage of donor organs for transplantation. To achieve successful xenotransplatation, there is the need to overcome immune rejection. Although, hyperacute rejection has been overcome by α1,3-galactosyltransferase knockout pig, cellular immune rejection remains as a subsequent barrier. Interleukin-10 (IL-10) is known as an anti-inflammatory and immunomodulatory cytokine which has been shown to limit inflammatory responses by inhibiting macrophage activation in several animal experiments. To study the effect of human IL-10 (hIL-10) on pig-to-human xenotransplantation, porcine kidney epithelial cell line (PK(15)) expressing hIL-10 was established. The cytotoxicity of macrophages decreased by hIL-10 from transgenic cells. Furthermore, there is a decreased production of pro-inflammatory cytokines, tumor necrosis factor-α and interleukin-23, and increased anti-inflammatory cytokines like IL-10, but not transforming growth factor beta, in the presence of hIL-10. Also, macrophage polarization toward M2-like phenotype were induced by hIL-10 from transgenic PK(15) cells. Finally, we suggest that the cytotoxicity of human macrophages was reduced by hIL-10 from transgenic cells, inducing M2-like macrophage polarization. Therefore, these results show that hIL-10 transgenic pig can be used as a model to overcome acute immune rejection in pig-to-human xenotransplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号