首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43707篇
  免费   3716篇
  国内免费   2070篇
  2024年   93篇
  2023年   462篇
  2022年   906篇
  2021年   1560篇
  2020年   1155篇
  2019年   1501篇
  2018年   1615篇
  2017年   1435篇
  2016年   1882篇
  2015年   2481篇
  2014年   2772篇
  2013年   3311篇
  2012年   3756篇
  2011年   3414篇
  2010年   2288篇
  2009年   1939篇
  2008年   2262篇
  2007年   2055篇
  2006年   1951篇
  2005年   1669篇
  2004年   1632篇
  2003年   1487篇
  2002年   1386篇
  2001年   767篇
  2000年   722篇
  1999年   613篇
  1998年   413篇
  1997年   327篇
  1996年   285篇
  1995年   269篇
  1994年   198篇
  1993年   197篇
  1992年   292篇
  1991年   235篇
  1990年   216篇
  1989年   193篇
  1988年   147篇
  1987年   173篇
  1986年   147篇
  1985年   119篇
  1984年   144篇
  1983年   97篇
  1982年   99篇
  1981年   73篇
  1980年   68篇
  1979年   70篇
  1978年   57篇
  1977年   46篇
  1974年   64篇
  1969年   49篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
51.
Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.  相似文献   
52.
We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b) mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn 97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b), Syn 97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles.  相似文献   
53.
The goal of this study was to assess the relationship between Aβ deposition and white matter pathology (i.e., white matter hyperintensities, WMH) on microstructural integrity of the white matter. Fifty-seven participants (mean age: 78±7 years) from an ongoing multi-site research program who spanned the spectrum of normal to mild cognitive impairment (Clinical dementia rating 0–0.5) and low to high risk factors for arteriosclerosis and WMH pathology (defined as WMH volume >0.5% total intracranial volume) were assessed with positron emission tomography (PET) with Pittsburg compound B (PiB) and magnetic resonance and diffusion tensor imaging (DTI). Multivariate analysis of covariance were used to investigate the relationship between Aβ deposition and WMH pathology on fractional anisotropy (FA) from 9 tracts of interest (i.e., corona radiata, internal capsule, cingulum, parahippocampal white matter, corpus callosum, superior longitudinal, superior and inferior front-occipital fasciculi, and fornix). WMH pathology was associated with reduced FA in projection (i.e., internal capsule and corona radiate) and association (i.e., superior longitudinal, superior and inferior fronto-occipital fasciculi) fiber tracts. Aβ deposition (i.e., PiB positivity) was associated with reduced FA in the fornix and splenium of the corpus callosum. There were interactions between PiB and WMH pathology in the internal capsule and parahippocampal white matter, where Aβ deposition reduced FA more among subjects with WMH pathology than those without. However, accounting for apoE ε4 genotype rendered these interactions insignificant. Although this finding suggests that apoE4 may increase amyloid deposition, both in the parenchyma (resulting in PiB positivity) and in blood vessels (resulting in amyloid angiopathy and WMH pathology), and that these two factors together may be associated with compromised white matter microstructural integrity in multiple brain regions, additional studies with a longitudinal design will be necessary to resolve this issue.  相似文献   
54.
Associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a two-stage hepatectomy technique which can be associated with a hypertrophic stimulus on the future liver remnant (FLR) stronger than other techniques–such as portal vein ligation (PVL). However, the reason of such hypertrophy is still unclear, but it is suggested that liver transection combined with portal vein ligation (ALPPS) during the first stage of this technique may play a key role. The aim of this study is to compare the hypertrophic stimulus on the FLR and the clinical changes associated with both ALPPS and PVL in a rat surgical model. For this purpose, three groups of SD rats were used, namely ALPPS (n = 30), PVL (n = 30) and sham-treated (n = 30). The second stage of ALPPS (hepatectomy of the atrophic lobes), was performed at day 8. Blood and FLR samples were collected at 1, 24, 48 hours, 8 days and 12 weeks after the surgeries. ALPPS provoked a greater degree of hypertrophy of the FLR than the PVL at 48 hours and 8 days (p<0.05). The molecular pattern was also different, with the highest expression of IL-1β at 24h, IL-6 at 8 days, and HGF and TNF-α at 48 hours and 8 days (p<0.05). ALPPS also brought about a mild proliferative stimulus at 12 weeks, with a higher expression of HGF and TGF-β (p<0.05) than PVL. Clinically, ALPPS caused a significant liver damage during the first 48 hours, with a recovery of liver function at day 8. In conclusion, ALPPS seems to induce higher functional hypertrophy on the FLR than PVL at day 8. Such regenerative response seems to be leaded by a complex interaction between pro-mitogenic (IL-6, HGF, TNF-α) and antiproliferative (IL1-β and TGF-β) cytokines.  相似文献   
55.
The abundance of an mRNA encoding an HMG1/2 protein from Pharbitis nil (HMG1) has been previously shown to be regulated by light and an endogenous rhythm in cotyledons. A second Pharbitis nil HMG cDNA (HMG2) was characterized. The sequence of HMG2 was 82% and 86% identical to HMG1 at the nucleotide and amino acid level, respectively. As with HMG1, HMG2 mRNA was detected in all vegetative tissues and was most abundant in roots. However, unlike HMG1, HMG2 mRNA abundance did not increase upon transfer of cotyledons to darkness and did not exhibit regulation by an endogenous circadian rhythm when maintained in continuous darkness over a 68 h period. Similarly, while the abundance of HMG1 mRNA during a dark period that induced photoperiodically controlled flowering was dramatically affected by brief light exposure (night break), this treatment had no effect on HMG2 mRNA abundance. Collectively, these data are consistent with a role of HMG1 in contributing to the circadian-regulated and/or dark-regulated gene expression with constitutive expression of HMG2 playing a housekeeping role in the general regulation of gene expression in Pharbitis nil cotyledons.  相似文献   
56.
During the early ontogeny of fish larvae, the accurate development of the visual system plays a key role, because it is involved in locating food, orientation, selection of favorable habitat, and evasion of predators. The structure of the eye of the fish is typical of vertebrates, with some modifications related to the aquatic environment. In the present work, we describe the development of the larval eye of Engraulis anchoita for the first time. Larvae were collected at the Permanent Station of Environmental Studies (EPEA) in coastal waters of the Southwestern Atlantic Ocean during research cruises in 2015 and 2016. We describe the histology of the retina layers, determine the beginning of the functionality of the eye, and discuss a possible synchronization with the development of the digestive tract. This study provides information about the biology of E. anchoita, the most abundant fish species in the southwestern Atlantic Ocean. Also, recent studies have shown responses of the retina and other tissues to the increase in environmental acidity. Therefore, results of this study are also discussed with respect to the possible effect of acidification on the larvae of this species. The continuity of the time series developed at the EPEA will allow monitoring the effect of long-term environmental and biological variables on the early ontogeny of anchovy in the context of climate change. The high commercial fishing potential of E. anchoita due to its high abundance, as well as its essential role in the trophic web of other commercially valuable fishing resources of Argentina, reinforce the need to continue deepening knowledge about this species. Research highlights:
  • Eyes of Engraulis anchoita larvae are functional from early larval stages.
  • At hatching, the retina is formed by only few layers from which the other layers differentiates during ontogeny.
  • Focal distance increases with larval growth.
  相似文献   
57.
Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis.  相似文献   
58.
Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72–85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets.  相似文献   
59.
Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.  相似文献   
60.
Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号