首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37296篇
  免费   16329篇
  国内免费   1647篇
  55272篇
  2024年   40篇
  2023年   203篇
  2022年   497篇
  2021年   1089篇
  2020年   2604篇
  2019年   4222篇
  2018年   4322篇
  2017年   4448篇
  2016年   4549篇
  2015年   4703篇
  2014年   4519篇
  2013年   4973篇
  2012年   2851篇
  2011年   2432篇
  2010年   3664篇
  2009年   2347篇
  2008年   1328篇
  2007年   868篇
  2006年   751篇
  2005年   733篇
  2004年   707篇
  2003年   653篇
  2002年   600篇
  2001年   473篇
  2000年   411篇
  1999年   321篇
  1998年   135篇
  1997年   142篇
  1996年   111篇
  1995年   90篇
  1994年   78篇
  1993年   68篇
  1992年   54篇
  1991年   31篇
  1990年   33篇
  1989年   29篇
  1988年   18篇
  1987年   26篇
  1986年   13篇
  1985年   19篇
  1984年   13篇
  1983年   7篇
  1982年   7篇
  1979年   9篇
  1976年   6篇
  1975年   10篇
  1974年   6篇
  1973年   11篇
  1970年   6篇
  1966年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
Five polymorphic microsatellite loci were characterized for Penaeus (Litopenaeus) vannamei. Loci were isolated using a partial Sau3A1 genomic library by the sequencing of randomly selected clones and by a biotinylated (CT)10 and (GT)10 probes screening procedure. The last strategy resulted in the most useful data. About 40% of the clones showed a previously reported satellite/microsatellite (PVS1), reducing the chance of finding new microsatellite regions. Whereas two of the microsatellite loci with more than 10 alleles will be useful for mating analysis in a breeding program, the others might prove useful for population genetic studies.  相似文献   
53.
54.
55.
56.
57.
Extremely miniaturized longipedes insects (body length c. 0.3 mm) embedded in two pieces of Cretaceous amber from Myanmar are described and interpreted. Using inverted fluorescence and light microscopy for detailed analysis of microstructures, the inclusions were identified as primary larvae of the beetle family Ripiphoridae, subfamily Ripidiinae. While the structure of thoracic and abdominal segments including appendages corresponds well with the groundplan known in recent members of Ripidiinae, a curved prosternal ridge with prominent spines (each c. 5 μm), the reduced condition of stemmata and antennae and the lack of sharp mandibles are unique features within the entire family, apparently apomorphies of the longipedes larvae. A sinuate prosternal edge with a dense row of spines (prosternoctenidium) might be homologous with ‘head ctenidia’ in some previously described miniaturized conicocephalate larvae, but further investigation is needed. The morphological differences between the head of longipedes larvae and extant Ripidiinae are interpreted as adaptations to different groups of hosts and life strategies. Palaeoethology of the longipedes larvae is briefly discussed. In addition, the systematic placement of conicocephalate larvae from Canadian, Myanmar and Russian Cretaceous ambers, already interpreted by various authors as primary instars within Coleopterida (assigned to either Strepsiptera or to the coleopteran Tenebrionoidea: Ripiphoridae), is discussed.  相似文献   
58.
59.
Wing geometry helps to identify mosquito species, even cryptic ones. On the other hand, temperature has a well‐known effect on insect metric properties. Can such effects blur the taxonomic signal embedded in the wing? Two strains of Aedes albopictus (laboratory and field strain) were examined under three different rearing temperatures (26, 30 and 33 °C) using landmark‐ and outline‐based morphometric approaches. The wings of each experimental line were compared with Aedes aegypti. Both approaches indicated similar associations between wing size and temperature. For the laboratory strain, the wing size significantly decreased as the temperature increased. For the field strain, the largest wings were observed at the intermediate temperature. The two morphometric approaches describing shape showed different sensibilities to temperature. For both strains and sexes, the landmark‐based approach disclosed significant wing shape changes with temperature changes. The outline‐based approach showed lesser effects, detecting significant changes only in laboratory females and in field males. Despite the size and shape changes induced by temperature, the two strains of Ae. albopictus were always distinguished from Ae. aegypti. The present study confirms the lability of size. However, it also suggests that, despite environmentally‐induced variation, the architecture of the wing still provides a strong taxonomic signal.  相似文献   
60.
The human milk microbiome is vertically transmitted to offspring during the postnatal period and has emerged as a critical driver of infant immune and metabolic development. Despite this importance in humans, the milk microbiome of nonhuman primates remains largely unexplored. This dearth of comparative work precludes our ability to understand how species‐specific differences in the milk microbiome may differentially drive maternal effects and limits how translational models can be used to understand the role of vertically transmitted milk microbes in human development. Here, we present the first culture‐independent data on the milk microbiome of a nonhuman primate. We collected milk and matched fecal microbiome samples at early and late lactation from a cohort of captive lactating vervet monkeys (N = 15). We found that, similar to humans, the vervet monkey milk microbiome comprises a shared community of taxa that are universally present across individuals. However, unlike in humans, this shared community is dominated by the genera Lactobacillus, Bacteroides, and Prevotella. We also found that, in contrast to previous culture‐dependent studies in humans, the vervet milk microbiome exhibits greater alpha‐diversity than the gut microbiome across lactation. Finally, we did not find support for the translocation of microbes from the gut to the mammary gland within females (i.e., “entero‐mammary pathway”). Taken together, our results show that the vervet monkey milk microbiome is taxonomically diverse, distinct from the gut microbiome, and largely stable. These findings demonstrate that the milk microbiome is a unique substrate that may selectively favor the establishment and persistence of particular microbes across lactation and highlights the need for future experimental studies on the origin of microbes in milk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号