全文获取类型
收费全文 | 19435篇 |
免费 | 1434篇 |
国内免费 | 1352篇 |
专业分类
22221篇 |
出版年
2024年 | 52篇 |
2023年 | 289篇 |
2022年 | 633篇 |
2021年 | 1065篇 |
2020年 | 709篇 |
2019年 | 892篇 |
2018年 | 801篇 |
2017年 | 615篇 |
2016年 | 884篇 |
2015年 | 1255篇 |
2014年 | 1476篇 |
2013年 | 1510篇 |
2012年 | 1759篇 |
2011年 | 1536篇 |
2010年 | 952篇 |
2009年 | 817篇 |
2008年 | 945篇 |
2007年 | 766篇 |
2006年 | 728篇 |
2005年 | 574篇 |
2004年 | 526篇 |
2003年 | 472篇 |
2002年 | 408篇 |
2001年 | 372篇 |
2000年 | 342篇 |
1999年 | 312篇 |
1998年 | 204篇 |
1997年 | 188篇 |
1996年 | 174篇 |
1995年 | 152篇 |
1994年 | 115篇 |
1993年 | 106篇 |
1992年 | 132篇 |
1991年 | 110篇 |
1990年 | 96篇 |
1989年 | 58篇 |
1988年 | 46篇 |
1987年 | 49篇 |
1986年 | 25篇 |
1985年 | 26篇 |
1984年 | 16篇 |
1983年 | 20篇 |
1982年 | 4篇 |
1980年 | 4篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
61.
Jianghui Zhang Xueqing Zhang Kexin Zhang Xiaoyan Lu Guojing Yuan Huayu Yang Haiyun Guo Zhihui Zhu Tianli Wang Jiahu Hao Ying Sun Puyu Su Zhihua Zhang 《Polish journal of microbiology》2022,71(2):241
With the development of genome sequencing, many researchers have investigated the mechanism by which the intestinal microbiota influences sleep across the brain-gut axis. However, the relationship between gut microbiota and sleep disorder remains unclear. Thus, we studied the difference in gut microbiota composition between poor sleep quality- and normal populations, which helps set the ground for future research. The recruited college students provided baseline information and stool samples and completed the Pittsburgh Sleep Quality Index (PSQI). We compared the two groups’ gut microbiota composition and functional differentiation by using the 16S rRNA gene sequencing analysis. The main bacterial difference and the most critical effect were mainly concentrated within Tenericutes and Elusimicrobia. Compared with the healthy control group, some functions of the gut microbiota were impaired in the poor sleep quality group, such as butanoate metabolism and propanoate metabolism. Bacterial taxa with significant differences raised the possibility for future diagnosis and treatment of sleep problems. 相似文献
62.
63.
Yuhualei Pan Jian-Hua Zhang Lianhe Zhao Jin-Cheng Guo Song Wang Yushang Zhao Shaoxin Tao Huan Wang Yan-Bing Zhu 《Journal of cellular biochemistry》2020,121(7):3593-3605
Glioblastoma multiforme (GBM) is a highly malignant brain tumor. We explored the prognostic gene signature in 443 GBM samples by systematic bioinformatics analysis, using GSE16011 with microarray expression and corresponding clinical data from Gene Expression Omnibus as the training set. Meanwhile, patients from The Chinese Glioma Genome Atlas database (CGGA) were used as the test set and The Cancer Genome Atlas database (TCGA) as the validation set. Through Cox regression analysis, Kaplan-Meier analysis, t-distributed Stochastic Neighbor Embedding algorithm, clustering, and receiver operating characteristic analysis, a two-gene signature (GRIA2 and RYR3) associated with survival was selected in the GSE16011 dataset. The GRIA2-RYR3 signature divided patients into two risk groups with significantly different survival in the GSE16011 dataset (median: 0.72, 95% confidence interval [CI]: 0.64-0.98, vs median: 0.98, 95% CI: 0.65-1.61 years, logrank test P < .001), the CGGA dataset (median: 0.84, 95% CI: 0.70-1.18, vs median: 1.21, 95% CI: 0.95-2.94 years, logrank test P = .0017), and the TCGA dataset (median: 1.03, 95% CI: 0.86-1.24, vs median: 1.23, 95% CI: 1.04-1.85 years, logrank test P = .0064), validating the predictive value of the signature. And the survival predictive potency of the signature was independent from clinicopathological prognostic features in multivariable Cox analysis. We found that after transfection of U87 cells with small interfering RNA, GRIA2 and RYR3 influenced the biological behaviors of proliferation, migration, and invasion of glioblastoma cells. In conclusion, the two-gene signature was a robust prognostic model to predict GBM survival. 相似文献
64.
65.
66.
Neonatal hypoxic-ischemic encephalopathy is one of the leading causes of death in infants. Increasing evidence indicates that oxidative stress and apoptosis are major contributors to hypoxic-ischemic injury and can be used as particularly promising therapeutic targets. Platycodin D (PLD) is a triterpenoid saponin that exhibits antioxidant properties. The aim of this study was to evaluate the effects of PLD on hypoxic-ischemic injury in primary cortical neurons. We found that oxygen-glucose deprivation/reperfusion (OGD/R) induced inhibition of cell viability and cytotoxicity, which were attenuated by PLD treatment. PLD treatment inhibited oxidative stress induced by OGD/R, which was evidenced by the reduced level of reactive oxygen species and increased activities of catalase, superoxide dismutase, and glutathione peroxidase. Histone-DNA enzyme-linked immunosorbent assay revealed that apoptosis was significantly decreased after PLD treatment in OGD/R-treated cortical neurons. The increased bax expression and decreased bcl-2 expression induced by OGD/R were reversed by PLD treatment. Furthermore, PLD treatment caused the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in OGD/R-stimulated cortical neurons. Suppression of this pathway blocked the protective effects of PLD on OGD/R-induced cell injury. These findings suggested that PLD executes its protective effects on OGD/R-induced cell injury via regulating the PI3K/Akt/mTOR pathway in cortical neurons. 相似文献
67.
Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1) the steps at which cofactors exert their biological activities and (2) the nature of that activity. Here we show that a new mathematical theory of steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of any two cofactors relative to a concentration limiting step (CLS) and to each other. The predictions of the theory, which can be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR) in U2OS cells. The analysis of TIF2 and sSMRT actions on GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to determine previously unobtainable information about the nature and position of cofactor action in any process displaying first-order Hill plot kinetics are now available. 相似文献
68.
Wen-Jie Ji Yong-Qiang Ma Xin Zhou Yi-Dan Zhang Rui-Yi Lu Zhao-Zeng Guo Hai-Ying Sun Dao-Chuan Hu Guo-Hong Yang Yu-Ming Li Lu-Qing Wei 《PloS one》2013,8(11)
Background
Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR) has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis.Methodology/Principal Findings
We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF) from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20mg/kg/day by oral gavage) revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels) and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson’ trichrome staining) in bleomycin treated (2.5mg/kg, via oropharyngeal instillation) male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6Chi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+) of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c-) remained unaffected by spironolactone during investigation.Conclusions/Significance
The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching. 相似文献69.
Identification,Design and Bio-Evaluation of Novel Hsp90 Inhibitors by Ligand-Based Virtual Screening
JianMin Jia XiaoLi Xu Fang Liu XiaoKe Guo MingYe Zhang MengChen Lu LiLi Xu JinLian Wei Jia Zhu ShengLie Zhang ShengMiao Zhang HaoPeng Sun QiDong You 《PloS one》2013,8(4)
Heat shock protein 90 (Hsp90), whose inhibitors have shown promising activity in clinical trials, is an attractive anticancer target. In this work, we first explored the significant pharmacophore features needed for Hsp90 inhibitors by generating a 3D-QSAR pharmacophore model. It was then used to virtually screen the SPECS databases, identifying 17 hits. Compound S1 and S13 exhibited the most potent inhibitory activity against Hsp90, with IC50 value 1.61±0.28 μM and 2.83±0.67 μM, respectively. Binding patterns analysis of the two compounds with Hsp90 revealed reasonable interaction modes. Further evaluation showed that the compounds exhibited good anti-proliferative effects against a series of cancer cell lines with high expression level of Hsp90. Meanwhile, S13 induced cell apoptosis in a dose-dependent manner in different cell lines. Based on the consideration of binding affinities, physicochemical properties and toxicities, 24 derivatives of S13 were designed, leading to the more promising compound S40, which deserves further optimization. 相似文献
70.
Hui Zhu Yugui Cui Jin Xie Ling Chen Xiangxiang Chen Xuejiang Guo Yefei Zhu Xinghai Wang Jiansun Tong Zuomin Zhou Yue Jia Yan‐he Lue Amiya Sinha Hikim Christina Wang Ronald S. Swerdloff Jiahao Sha 《Proteomics》2010,10(19):3480-3493
Mild testicular heating safely and reversibly suppresses spermatogenesis. In this study, we attempted to clarify the underlying molecular mechanism(s) involved in heat‐induced spermatogenesis suppression in human testis. We conducted global proteomic analyses of human testicular biopsies before, and at 2 and 9 wk after heat treatment. Thirty‐one and Twenty‐six known proteins were identified with significant differential expression at 2 and 9 wk after heat treatment, respectively. These were used to characterize the cellular and molecular events in the testes when seminiferous epithelia became damaged (2 wk) and recovered (9 wk). At 2 wk post‐treatment, the changed expression of a series of proteins could promote apoptosis or suppress proliferation and cell survival. At 9 wk post‐treatment, the changed expression of proteins mainly promoted cell proliferation, differentiation and survival, but resisted cell apoptosis. Among those heat‐regulated proteins, HNRNPH1 was selected for the further functional study. We found that HNRNPH1 was an anti‐apoptosis protein that could regulate the expression of other heat‐induced proteins. In conclusion, heat‐induced reversible suppression of spermatogenesis occurred by modulating the expression of proteins related to proliferation, differentiation, apoptosis and cell survival pathways. These differentially expressed proteins were found to be key molecular targets affecting spermatogenesis after heat treatment. 相似文献