首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9267篇
  免费   707篇
  国内免费   989篇
  10963篇
  2024年   24篇
  2023年   124篇
  2022年   313篇
  2021年   508篇
  2020年   378篇
  2019年   450篇
  2018年   375篇
  2017年   275篇
  2016年   410篇
  2015年   585篇
  2014年   699篇
  2013年   784篇
  2012年   888篇
  2011年   766篇
  2010年   492篇
  2009年   464篇
  2008年   531篇
  2007年   471篇
  2006年   385篇
  2005年   297篇
  2004年   295篇
  2003年   260篇
  2002年   212篇
  2001年   147篇
  2000年   128篇
  1999年   130篇
  1998年   84篇
  1997年   65篇
  1996年   56篇
  1995年   61篇
  1994年   64篇
  1993年   41篇
  1992年   36篇
  1991年   43篇
  1990年   31篇
  1989年   23篇
  1988年   12篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1977年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
Giardia duodenalis, the causative agent of giardiasis, is among the most important causes of waterborne diarrheal diseases around the world. Giardia infection may persist over extended periods with intestinal inflammation, although minimal. Cyclooxygenase (COX)-2 is well known as an important inducer of inflammatory response, while the role it played in noninvasive Giardia infection remains elusive. Here we investigated the regulatory function of COX-2 in Giardia-induced pro-inflammatory response and defense-related nitric oxide (NO) generation in macrophage-like cell line, and identified the potential regulators. We initially found that Giardia challenge induced up-regulation of IL-1β, IL-6, TNF-α, prostaglandin (PG) E2, and COX-2 in macrophages, and pretreatment of the cells with COX-2 inhibitor NS398 reduced expressions of those pro-inflammatory factors. It was also observed that COX-2 inhibition could attenuate the up-regulated NO release and inducible NO synthase (iNOS) expression induced by Giardia. We further confirmed that Giardia-induced COX-2 up-regulation was mediated by the phosphorylation of p38 and ERK1/2 MAPKs and NF-κB. In addition, inhibition of reactive oxygen species (ROS) by NAC was shown to repress Giardia-induced activation of MAPK/NF-κB signaling, up-regulation of COX-2 and iNOS, increased levels of PGE2 and NO release, and up-expressions of IL-1β, IL-6, and TNF-α. Collectively, in this study, we revealed a critical role of COX-2 in modulating pro-inflammatory response and defense-related NO production in Giardia-macrophage interactions, and this process was evident to be controlled by ROS-dependent activation of MAPK/NF-κB signaling. The results can deepen our knowledge of anti-Giardia inflammatory response and host defense mechanisms.  相似文献   
52.
Early spontaneous abortion (ESA) is one of the most common complications during pregnancy and the inflammation condition in uterine environment such as long‐term exposure to high TNFα plays an essential role in the aetiology. Ferritin heavy chain (FTH1) is considered to be closely associated with inflammation and very important in normal pregnancy, yet the underlying mechanism of how TNFα induced abortion and its relationship with FTH1 remain elusive. In this study, we found that TNFα and FTH1 were positively expressed in decidual stromal cells and increased significantly in the ESA group compared with the normal pregnancy group (NP group). Besides, TNFα expression was positively correlated with FTH1 expression. Furthermore, in vitro cell model demonstrated that high TNFα could induce the abnormal signals of TNFR/NF‐κB/FTH1 and activate apoptosis both in human endometrium stromal cells (hESCs) and in local decidual tissues. Taken together, the present findings suggest that the excessive apoptosis in response to TNFα‐induced upregulation of FTH1 may be responsible for the occurrence of ESA, and thus provide a possible therapeutic target for the treatment of ESA.  相似文献   
53.
54.
Root stem cell niche (SCN) consists of a quiescent center (QC) and surrounding stem cells. Disrupted symplastic communication leads to loss of stemness in the whole SCN. Several SCN regulators were reported to move between cells for SCN maintenance. However, single mutant of these regulators is insufficient to abolish QC stemness despite the high differentiation rate in surrounding stem cells. To dissect the mechanism behind such distinct stemness in SCN, we combined the mis‐expression strategy with pWOX5:icals3m system in which QC is symplastically isolated. We found the starch accumulation in QC could be synergistically repressed by WUSCHEL‐RELATED HOMEOBOX 5 (WOX5), SHORT‐ROOT (SHR), SCARCROW (SCR), and PLETHORA (PLT). Like PLTs, other core regulators also exhibited dimorphic functions by inhibiting differentiation at a higher dose while promoting cell division at a low protein level. Being located in the center of the intersected expression zones, QC cells receive the highest level of core regulators, forming the most robust stemness within SCN. WUSCHEL‐RELATED HOMEOBOX 5 was sufficient to activate PLT1/2 expression, contributing to the QC‐enriched PLTs. Our results provide experimental evidence supporting the long‐standing hypothesis that the combination of spatial expression, synergistic function and dosage effect of core regulators result in spatially distinct stemness in SCN.  相似文献   
55.
Tumour‐derived exosomes have been shown to induce pre‐metastatic niche formation, favoring metastatic colonization of tumour cells, but the underlying molecular mechanism is still not fully understood. In this study, we showed that exosomes derived from the LLC cells could indeed significantly enhance their intrapulmonary colonization. Circulating LLC‐derived exosomes were mainly engulfed by lung fibroblasts and led to the NF‐κB signalling activation. Further studies indicated that the exosomal miR‐3473b was responsible for that by hindering the NFKB inhibitor delta's (NFKBID) function. Blocking miR‐3473b could reverse the exosome‐mediated NF‐κB activation of fibroblasts and decrease intrapulmonary colonization of lung tumour cells. Together, this study demonstrated that the miR‐3473b in exosomes could mediate the interaction of lung tumour cells and local fibroblasts in metastatic sites and, therefore, enhance the metastasis of lung tumour cells.  相似文献   
56.
Adenomyosis is also called internal endometriosis and affects about 20% of reproductive‐aged women. It seriously reduces life quality of patients because current drug therapies face with numerous challenges. Long‐term clinical application of mifepristone exhibits wonderful therapeutic effects with mild side‐effects in many disorders since 1982. Since adenomyosis is a refractory disease, we investigate whether mifepristone can be applied in the treatment of adenomyosis. In this study, we investigated the direct effects of mifepristone on human primary eutopic endometrial epithelial cells and stromal cells in adenomyosis. We found that mifepristone causes cell cycle arrest through inhibiting CDK1 and CDK2 expressions and induces cell apoptosis via the mitochondria‐dependent signalling pathway in endometrial epithelial cells and stromal cells of adenomyosis. Furthermore, mifepristone inhibits the migration of endometrial epithelial cells and stromal cells through decreasing CXCR4 expression and restricts the invasion of endometrial epithelial cells via suppression of epithelial‐mesenchymal transition in adenomyosis. We also found that mifepristone treatment decreases the uterine volume, CA125 concentration and increases the haemoglobin concentration in serum for adenomyosis patients. Therefore, we demonstrate that mifepristone could serve as a novel therapeutic drug in the treatment of adenomyosis, and therefore, the old dog can do a new trick.  相似文献   
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号