首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11402篇
  免费   911篇
  国内免费   771篇
  13084篇
  2024年   20篇
  2023年   212篇
  2022年   400篇
  2021年   631篇
  2020年   400篇
  2019年   515篇
  2018年   538篇
  2017年   343篇
  2016年   509篇
  2015年   711篇
  2014年   793篇
  2013年   921篇
  2012年   1070篇
  2011年   931篇
  2010年   577篇
  2009年   498篇
  2008年   534篇
  2007年   492篇
  2006年   430篇
  2005年   366篇
  2004年   305篇
  2003年   234篇
  2002年   190篇
  2001年   203篇
  2000年   170篇
  1999年   178篇
  1998年   102篇
  1997年   123篇
  1996年   105篇
  1995年   87篇
  1994年   92篇
  1993年   49篇
  1992年   74篇
  1991年   55篇
  1990年   44篇
  1989年   47篇
  1988年   39篇
  1987年   27篇
  1986年   20篇
  1985年   22篇
  1984年   12篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Hongbin Wang  Xi Chen  Teng He  Yanna Zhou  Hong Luo 《Genetics》2013,195(4):1291-1306
The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Drosophila brain and identified 47 genes that are positively regulated by JAK/STAT. About two-thirds of the genes encode proteins that have orthologs in humans. The STAT targets in the optic lobe appear to be different from the targets identified in other tissues, suggesting that JAK/STAT signaling may regulate different target genes in a tissue-specific manner. Functional analysis of Nop56, a cell-autonomous STAT target, revealed an essential role for this gene in the growth and proliferation of neuroepithelial stem cells in the optic lobe and an inhibitory role in lamina neurogenesis.  相似文献   
982.
Insulin, a polypeptide hormone secreted by pancreatic cells, is a key regulator in glucose homeostasis. Its deficiency leads to insulin-dependent (type I) diabetes whereas resistance to insulin is common in type II diabetes, obesity and a range of endocrine disorders. Its determination is of considerable value, particularly in the clinical diagnosis of diabetes mellitus and the doping control of athletes. It has, additionally, been noted as a potential breast cancer marker (serum insulin levels being found to be raised in comparison to control patients). Electrochemical assays are potentially very cheap, highly sensitive, and very readily transposed to a point of care. Though there exist numerous examples of label free impedimetric or capacitative assaying of biomolecules, these are rarely demonstrated to be effective in complex biological mixtures or to be applicable to low molecular weight targets (since they operate through the interfacial displacement of water/ions and/or the steric blocking of a redox probe). We report herein an ultrasensitive electrochemical and label-free biosensor for insulin in blood serum with a clinically relevant linear range and detection limit of 1.2pM. The transducing surfaces, based on readily prepared, antibody modified, polyethylene glycol monolayer modified polycrystalline gold surfaces, respond in a highly specific and re-useable manner to the target in up to 50% blood serum.  相似文献   
983.
Sixteen triterpenoid glycosides, named S13 to S25, S37, S38 and S40, were isolated from the root of Bupleurum polyclonum Y. Li et S. L. Pan, and their structures were determined from NMR spectral analyses. Among them, S24, S37 and S38 were found to be new substances, their structures being established as 30-β-d-glucopyranosyl 30-hydroxysaikosaponin-b2, 2″-O-acetylsaikosaponin-b2 and 3″-O>-acetylsaikosaponin-b2, respectively.  相似文献   
984.
985.
  相似文献   
986.
Titanium alloy is one of the best materials for biomedical applications due to its superior biocompatibility, outstanding corrosion resistance, and low elastic modulus. However, the friction and wear behaviors of titanium alloys were sensitive to the environment including lubrication. In order to clarify the wear mechanism of titanium alloy under different lubrications including deionized water, physiological saline and bovine serum, the friction and wear tests were performed between Ti6Al4V plates and Si3N4 ball on a universal multi-functional tester. The friction and the wear rate of titanium alloy were measured under dry friction and three different lubrication conditions. The worn surfaces were examined by scanning electron microscopy. The results revealed that under the dry friction, the wear resistance of titanium alloy was the worst since the wear mechanism was mainly the combination of abrasive wear and oxidation wear. It was also found that Ti6Al4V alloy had low friction coefficient and wear rate under three lubrication conditions, and its wear mechanism was adhesive wear.  相似文献   
987.
Anaplastic lymphoma kinase (ALK) plays a crucial role in multiple malignant cancers. It is known as a well-established target for the treatment of ALK-dependent cancers. Even though substantial efforts have been made to develop ALK inhibitors, only crizotinib, ceritinib, and alectinib had been approved by the U.S. Food and Drug Administration for patients with ALK-positive non-small cell lung cancer (NSCLC). The secondary mutations with drug-resistance bring up difficulties to develop effective drugs for ALK-positive cancers. To give a comprehensive understanding of molecular mechanism underlying inhibitor response to ALK tyrosine kinase mutations, we established an accurate assessment for the extensive profile of drug against ALK mutations by means of computational approaches. The molecular mechanics-generalized Born surface area (MM-GBSA) method based on molecular dynamics (MD) simulation was carried out to calculate relative binding free energies for receptor-drug systems. In addition, the structure-based virtual screening was utilized to screen effective inhibitors targeting wild-type ALK and the gatekeeper mutation L1196M from 3180 approved drugs. Finally, the mechanism of drug resistance was discussed, several novel potential wild-type and L1196M mutant ALK inhibitors were successfully identified.  相似文献   
988.
ObjectiveTo assess the feasibility of ultrasound molecular imaging in the early diagnosis of liver ischemia-reperfusion injury (IRI) using a nanoscale contrast agent targeting anti-intracellular adhesion molecule-1 (anti-ICAM-1).MethodsThe targeted nanobubbles containing anti-ICAM-1 antibody were prepared using the avidin-biotin binding method. Human hepatic sinusoidal endothelial cells (HHSECs) were cultured at the circumstances of hypoxia/reoxygenation (H/R) and low temperature. The rabbit liver IRI model (I/R group) was established using the Pringle’s maneuver. The time-intensity curve of the liver contrast ultrasonographic images was plotted and the peak intensity, time to peak, and time of duration were calculated.ResultsThe size of the targeted nanobubbles were 148.15 ± 39.75 nm and the concentration was 3.6–7.4 × 109/ml, and bound well with the H/R HHSECs. Animal contrast enhanced ultrasound images showed that the peak intensity and time of duration of the targeted nanobubbles were significantly higher than that of common nanobubbles in the I/R group, and the peak intensity and time of duration of the targeted nanobubbles in the I/R group were also significantly higher than that in the SO group.ConclusionThe targeted nanobubbles have small particle size, stable characteristic, and good targeting ability, which can assess hepatic ischemia-reperfusion injury specifically, noninvasively, and quantitatively at the molecular level.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号