首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108538篇
  免费   1507篇
  国内免费   1977篇
  2024年   42篇
  2023年   241篇
  2022年   572篇
  2021年   945篇
  2020年   571篇
  2019年   762篇
  2018年   12395篇
  2017年   11060篇
  2016年   8099篇
  2015年   1611篇
  2014年   1567篇
  2013年   1697篇
  2012年   5638篇
  2011年   14023篇
  2010年   12705篇
  2009年   8861篇
  2008年   10540篇
  2007年   11977篇
  2006年   806篇
  2005年   999篇
  2004年   1369篇
  2003年   1372篇
  2002年   1040篇
  2001年   502篇
  2000年   379篇
  1999年   254篇
  1998年   165篇
  1997年   156篇
  1996年   130篇
  1995年   110篇
  1994年   109篇
  1993年   116篇
  1992年   122篇
  1991年   137篇
  1990年   60篇
  1989年   62篇
  1988年   58篇
  1987年   45篇
  1986年   22篇
  1985年   27篇
  1984年   30篇
  1983年   32篇
  1982年   9篇
  1972年   246篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Fructose, glucose, and mannose were treated with subcritical aqueous ethanol for ethanol concentrations ranging from 0 to 80% (v/v) at 180–200 °C. The aldose–ketose isomerization was more favorable than ketose–aldose isomerization and glucose–mannose epimerization. The isomerization of the monosaccharides was promoted by the addition of ethanol. In particular, mannose was isomerized most easily to fructose in subcritical aqueous ethanol. The apparent equilibrium constants for the isomerizations of mannose to fructose, Keq,M→F, and glucose to fructose, Keq,G→F, were independent of ethanol concentration and increased with increasing temperature. Moreover, the Keq,M→F value was much larger than the Keq,G→F value. The enthalpies for the isomerization of mannose to fructose, ΔHM→F, and glucose to fructose, ΔHG→F, were estimated to be 18 and 24 kJ/mol, respectively, according to van’t Hoff equation. Subcritical aqueous ethanol can be used to produce fructose from glucose and mannose efficiently.  相似文献   
912.
Spinach has long been used as a model for genetic and physiological studies of sex determination and expression. Although trisomic analysis from a cross between diploid and triploid plants identified the XY chromosome as the largest chromosome, no direct evidence has been provided to support this at the molecular level. In this study, the largest chromosomes of spinach from mitotic metaphase spreads were microdissected using glass needles. Degenerate oligonucleotide primed polymerase chain reaction was used to amplify the dissected chromosomes. The amplified products from the Y chromosome were identified using the male-specific marker T11A. For the first time, the largest spinach chromosome was confirmed to be a sex chromosome at the molecular level. PCR products from the isolated chromosomes were used in an in situ probe mixture for painting the Y chromosome. The fluorescence signals were mainly distributed on all chromosomes and four pair of weaker punctate fluorescence signal sites were observed on the terminal region of two pair of autosomes. These findings provide a foundation for the study of sex chromosome evolution in spinach.  相似文献   
913.
The extracellular polysaccharides (ECPS) released by diatoms have significant roles in marine ecosystems and have potential applications including drug-discovery and biopharmaceutical precursors. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technology was used in the structural analysis of the ECPS released by Thalassiosira pseudonana (Bacillariophyta). Three different deproteinization methods, the Sevag method, the trichloroacetic acid (TCA) method, and the enzymolysis method, were compared in the purification of ECPS. Our results suggested that TCA was the best deproteinization method among the three methods for subsequent MALDI-TOF MS investigation because of its high ECPS yield, protein removal ability and reliable MALDI-TOF MS fingerprint. The degree of polymerization (d.p.) profiles, the molecular weight of the ECPS and the distribution pattern of the polymers with different molecular mass were described from the MALDI-TOF MS spectra. This work represents the whole-level composition of the ECPS released by the diatom and has improved our knowledge of the structural characterization of ECPS.  相似文献   
914.
915.
Presenilin-associated protein (PSAP) has been identified as a mitochondrial proapoptotic protein. However, the mechanism by which PSAP induces apoptosis remains unknown. To this end, we have established an inducible expression system. Using this system, we have examined the roles of B-cell lymphoma 2 (Bcl-2) family proteins, cytochrome c, Smac (Smac/Diablo, second mitochondria-derived activator of caspases/direct IAP binding protein with low PI), and Apaf-1 (apoptotic protease-activating factor) in PSAP-induced apoptosis. Our results demonstrate that knockdown of Apaf-1 abolished PSAP-induced caspase activation and poly(ADP ribose) polymerase (PARP) cleavage, indicating that the apoptosome formation triggered by cytochrome c is crucial for PSAP-induced apoptosis. Our data also demonstrate that knockdown of Smac abolished PSAP-induced caspase activation and PARP cleavage, indicating that, in addition to Apaf-1 or apoptosome formation, Smac is also essential for PSAP-induced apoptosis. However, interestingly, our data demonstrate that overexpression of Bcl-2 and Bcl-xL did not protect cells from PSAP-induced apoptosis, and that knockdown of Bid, Bax, and Bak had no effect on PSAP-induced cytochrome c and Smac release, indicating that PSAP-induced apoptosis is not regulated by Bcl-2 family proteins. These results strongly suggest that PSAP evokes mitochondrial apoptotic cascades via a novel mechanism that is not regulated by Bcl-2 family proteins, but that both the formation of cytochrome c-Apaf-1 apoptosome and the presence of Smac are absolutely required for PSAP-induced apoptosis.  相似文献   
916.
Cyanobacteria produce phosphatases in response to phosphorus deficiency as some other autotrophs. However, little has been documented on the effects of key climate change factors, such as temperature rise and solar UV radiation (280–400 nm), on cyanobacterial alkaline phosphatase activity. Here, we found that the terrestrial cyanobacterium Nostoc flagelliforme showed higher activity of the enzyme with increasing temperature and pH levels, exhibiting maximal values at 45 °C and pH?11, respectively. However, when exposed to solar radiation in the presence of UV-A (320–400 nm) and UV-B (280–320 nm), significant reduction of the enzyme activity was observed at a photosynthetically active radiation (PAR) level of 300 W?m?2 (1,450 μmol photons m?2 s?1), which is equivalent or lower than the noontime level of solar PAR at the organism's habitats. UV-A and UV-A + UV-B induced about 21 and 39 % inhibition of the enzyme activity in the 3-h exposures. The decrease in the activity of phosphatase can be attributed to the UV radiation-induced inactivation of the enzyme and indirectly to the UV radiation-induced production of reactive oxygen species.  相似文献   
917.
3, 5-Diiodothyronine (T2), a natural metabolite of triiodothyronine (T3) from deiodination pathway, can mimic biologic effects of T3 without inducing thyrotoxic effects. Recent studies revealed T3 acted as a protective factor against diabetic nephropathy (DN). Nevertheless, little is known about the effect of T2 on DN. This study was designed to investigate whether and how T2 affects experimental models of DN in vivo and in vitro. Administration of T2 was found to prevent significant decrease in SIRT1 protein expression and activity as well as increases in blood glucose, urine albumin excretion, matrix expansion, transforming growth factor-β1 expression, fibronectin and type IV collagen deposition in the diabetic kidney. Concordantly, similar effects of T2 were exhibited in the cultured rat mesangial cells (RMC) exposed to high glucose and that could be abolished by a known SIRT1 inhibitor, sirtinol. Moreover, enhanced NF-κB acetylation and JNK phosphorylation present in both diabetic rats and high glucose-treated RMC were distinctly dampened by T2. Collectively, these results suggested that T2 was a protective agent against renal damage in diabetic nephropathy, whose action involved regulation of SIRT1.  相似文献   
918.
Diabetic nephropathy, as a severe microvascular complication of diabetic mellitus, has become the leading cause of end-stage renal diseases. However, no effective therapeutic strategy has been developed to prevent renal damage progression to end stage renal disease. Hence, the present study evaluated the protective effects of grape seed procyanidin B2 (GSPB2) and explored its molecular targets underlying diabetic nephropathy by a comprehensive quantitative proteomic analysis in db/db mice. Here, we found that oral administration of GSPB2 significantly attenuated the renal dysfunction and pathological changes in db/db mice. Proteome analysis by isobaric tags for relative and absolute quantification (iTRAQ) identified 53 down-regulated and 60 up-regulated proteins after treatment with GSPB2 in db/db mice. Western blot analysis confirmed that milk fat globule EGF-8 (MFG-E8) was significantly up-regulated in diabetic kidney. MFG-E8 silencing by transfection of MFG-E8 shRNA improved renal histological lesions by inhibiting phosphorylation of extracellular signal-regulated kinase1/2 (ERK1?2), Akt and glycogen synthase kinase-3beta (GSK-3β) in kidneys of db/db mice. In contrast, over-expression of MFG-E8 by injection of recombinant MFG-E8 resulted in the opposite effects. GSPB2 treatment significantly decreased protein levels of MFG-E8, phospho-ERK1/2, phospho-Akt, and phospho-GSK-3β in the kidneys of db/db mice. These findings yield insights into the pathogenesis of diabetic nephropathy, revealing MFG-E8 as a new therapeutic target and indicating GSPB2 as a prospective therapy by down-regulation of MFG-E8, along with ERK1/2, Akt and GSK-3β signaling pathway.  相似文献   
919.
X Hu  J Gao  Y Liao  S Tang  F Lu 《Cell death & disease》2013,4(10):e898
Retinoic acid (RA) contributes to cleft palate; however, the cellular and molecular mechanisms responsible for the deleterious effects on the developing palate are unclear. Wnt signaling is a candidate pathway in the cleft palate and is associated with RA in organ development; thus, we aim to investigate whether RA-induced cleft palate also results from altered Wnt signaling. Administration of RA to mice altered cell proliferation and apoptosis in craniofacial tissues by regulating molecules controlling cell cycle and p38 MAPK signaling, respectively. This altered cell fate by RA is a crucial mechanism contributing to 100% incidence of cleft palate. Moreover, Wnt/β-catenin signaling was completely inhibited by RA in the early developing palate via its binding and activation with RA receptor (RAR) and is responsible for RA-induced cleft palate. Furthermore, PI3K/Akt signaling was also involved in actions of RA. Our findings help in elucidating the mechanisms of RA-induced cleft palate.  相似文献   
920.
L Liu  G Li  Q Li  Z Jin  L Zhang  J Zhou  X Hu  T Zhou  J Chen  N Gao 《Cell death & disease》2013,4(12):e941
The diterpene triepoxide triptolide is a major active component of Tripterygium wilfordii Hook F, a popular Chinese herbal medicine with the potential to treat hematologic malignancies. In this study, we investigated the roles of triptolide in apoptosis and cell signaling events in human leukemia cell lines and primary human leukemia blasts. Triptolide selectively induced caspase-dependent cell death that was accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. Furthermore, we found that triptolide dramatically induced ROCK1 cleavage/activation and MLC and MYPT phosphorylation. ROCK1 was cleaved and activated by caspase-3, rather than RhoA. Inhibiting MLC phosphorylation by ML-7 significantly attenuated triptolide-mediated apoptosis, caspase activation, and cytochrome c release. In addition, ROCK1 inhibition also abrogated MLC and MYPT phosphorylation. Our in vivo study showed that both ROCK1 activation and MLC phosphorylation were associated with the tumor growth inhibition caused by triptolide in mouse leukemia xenograft models. Collectively, these findings suggest that triptolide-mediated ROCK1 activation and MLC phosphorylation may be a novel therapeutic strategy for treating hematological malignancies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号