首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   8篇
  国内免费   4篇
  43篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   2篇
  2003年   1篇
排序方式: 共有43条查询结果,搜索用时 10 毫秒
21.
Although all‐inorganic perovskite solar cells (PSCs) demonstrate high thermal stability, cesium‐lead halide perovskites with high iodine content suffer from poor stability of the black phase (α‐phase). In this study, it is demonstrated that incorporating InCl3 into the host perovskite lattice helps to inhibit the formation of yellow phase (δ‐phase) perovskite and thereby enhances the long‐term ambient stability. The enhanced stability is achieved by a strategy for the structural reconstruction of CsPbI2Br perovskite by means of In3+ and Cl? codoping, which gives rise to a significant improvement in the overall spatial symmetry with a closely packed atom arrangement due to the crystal structure transformation from orthorhombic (Pnma) to cubic (Pm‐3m). In addition, a novel thermal radiation heating method that further improves the uniformity of the perovskite thin films is presented. This approach enables the construction of all‐inorganic InCl3:CsPbI2Br PSCs with a champion power conversion efficiency of 13.74% for a small‐area device (0.09 cm2) and 11.4% for a large‐area device (1.00 cm2).  相似文献   
22.
All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented.  相似文献   
23.
Two chemically tailored new conjugated copolymers, HSL1 and HSL2, were developed and applied as hole selective layers to improve the anode interface of fullerene/perovskite planar heterojunction solar cells. The introduction of polar functional groups on the polymer side chains increases the surface energy of the hole selective layers (HSLs), which promote better wetting with the perovskite films and lead to better films with full coverage and high crystallinity. The deep highest occupied molecular orbital levels of the HSLs align well with the valence band of the perovskite semiconductors, resulted in increase photovoltage. The high lying lowest unoccupied molecule orbital level provides sufficient electron blocking ability to prevent electrons from reaching the anode and reduces the interfacial trap‐assisted recombination at the poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/perovskite interface, resulting in a longer charge‐recombination lifetime and shorter charge‐extraction time. In the presence of the HSLs, high‐performance CH3NH3PbI x Cl3? x perovskite solar cells with a power conversion efficiency (PCE) of 16.6% (V oc: 1.07 V) and CH3NH3Pb(I0.3Br0.7) x Cl3? x cells with a PCE of 10.3% (V oc: 1.34 V) can be realized.  相似文献   
24.
A new series of 3,6-diaryl-1H-pyrazolo[3,4-b]pyridine compounds have been discovered as potent anaplastic lymphoma kinase (ALK) inhibitors. The 4-hydroxyphenyl in the 6-position of 1H-pyrazolo[3,4-b]pyridine were crucial and a fluorine atom substitution could give promising inhibitory activity. The IC50 of compound 9v against ALK was up to 1.58?nM and a binding mechanism was proposed.  相似文献   
25.
在人类支配的景观中,生境退化已经导致多个物种种群数量不断减少,分布范围不断缩减。紫貂(Martes zibellina)为国家Ⅰ级重点保护动物,种群数量稀少,开展栖息地适宜性研究工作对制定科学的栖息地保护计划至关重要。于2021年1月-2022年8月在黑龙江省北极村国家级自然保护区采用样线调查法、足迹链跟踪、远红外相机监测综合收集到紫貂和猎物(雪兔)活动点信息。利用最大熵(MaxEnt)栖息地建模分析方法,首次在多个分辨率尺度背景下对紫貂种群的栖息地适宜性进行评价,研究结果表明:(1)利用ArcGIS 10.4重采样后在6个分辨率尺度(30m、60m、120m、240m、480m、960m)进行栖息地建模分析,基于主要栖息地变量因子对模型的贡献率及稳定性影响,并综合考虑研究区域面积,最终选定30m分辨率尺度作为紫貂栖息地最佳分析建模尺度,在30m分辨率尺度栖息地预测模型的曲线下面积(AUC)值为0.881;(2)研究发现猎物资源、植被类型和地形变量是影响紫貂栖息地适宜性的主要变量因子:雪兔出现概率较高、距草地与河流较近、海拔约400-600m、距常绿针叶林1.5km、距落叶针叶林约200m、坡向为50-250°的区域为紫貂的适宜栖息地;(3)栖息地适宜性分析表明,北极村国家级自然保护区紫貂适宜栖息地和次适宜栖息地面积共计23.66km2,约占保护区的17.2%,主要集中在保护区中部,而东部和西北部区域,栖息地破碎化较严重。基于模型结果与野外调查,提出了三条建议:(1)应严格控制人为活动,避免因人类干扰造成不适宜栖息地面积的持续扩大;(2)建立生态廊道促进保护区西部与中部紫貂种群进行个体交流,降低紫貂种群局部区域灭绝概率;(3)对东部地区破碎化的栖息地进行修复,扩大东部适宜栖息地面积,使破碎化的栖息地连接为整体。为分布于我国最北端的紫貂种群恢复创造条件,这对于构建该地区相对稳定的生物多样性保护空间格局有着重要意义。  相似文献   
26.
27.
A wastewater culture system was designed to study the root growth of eight species of wetland plants with two different root types. The system included a plastic barrel for holding the wastewater and a foam plate for holding the plant. The results indicated that the root growth of the plants with fibril roots was faster than that of the plants with rhizomatic roots. The species with fibril roots had higher root number (1349 per plant) than species with rhizomatic roots (549 per plant) after ten weeks of cultivation. The average root biomass of plants with fibril roots was 11.3 g per plant, whereas that of plants with rhizomatic roots was 7.4 g per plant. Fine root biomass of diameter ≤ 1 mm constituted 51.9% of the total root biomass in plants with fibril roots, whereas it accounted for only 25.1% in plants with rhizomatic roots. The root surface area of the plants with fibril roots (6933 cm2 per plant) was markedly larger than that of the species with rhizomatic roots (1897 cm2 per plant). The species with rhizomatic roots showed a longer root lifespan (46.6 days) than those with fibril roots (34.8 days).  相似文献   
28.
In this work, both anode and cathode interfaces of p‐i‐n CH3NH3PbI3 perovskite solar cells (PVSCs) are simultaneously modified to achieve large open‐circuit voltage (Voc) and fill factor (FF) for high performance semitransparent PVSCs (ST‐PVSCs). At the anode, modified NiO serves as an efficient hole transport layer with appropriate surface property to promote the formation of smooth perovskite film with high coverage. At the cathode, a fullerene bisadduct, C60(CH2)(Ind), with a shallow lowest unoccupied molecular orbital level, is introduced to replace the commonly used phenyl‐C61‐butyric acid methyl ester (PCBM) as an alternative electron transport layer in PVSCs for better energy level matching with the conduction band of the perovskite layer. Therefore, the Voc, FF and power conversion efficiency (PCE) of the PVSCs increase from 1.05 V, 0.74 and 16.2% to 1.13 V, 0.80 and 18.1% when the PCBM is replaced by C60(CH2)(Ind). With the advantages of high Voc and FF, ST‐PVSCs are also fabricated using an ultrathin transparent Ag as cathode, showing an encouraging PCEs of 12.6% with corresponding average visible transmittance (AVT) over 20%. These are the highest PCEs reported for ST‐PVSCs with similar AVTs paving the way for using ST‐PVSCs as power generating windows.  相似文献   
29.
An amino‐functionalized copolymer with a conjugated backbone composed of fluorene, naphthalene diimide, and thiophene spacers (PFN‐2TNDI) is introduced as an alternative electron transport layer (ETL) to replace the commonly used [6,6]‐Phenyl‐C61‐butyric acid methyl ester (PCBM) in the p–i–n planar‐heterojunction organometal trihalide perovskite solar cells. A combination of characterizations including photoluminescence (PL), time‐resolved PL decay, Kelvin probe measurement, and impedance spectroscopy is used to study the interfacial effects induced by the new ETL. It is found that the amines on the polymer side chains not only can passivate the surface traps of perovskite to improve the electron extraction properties, they also can reduce the work function of the metal cathode by forming desired interfacial dipoles. With these dual functionalities, the resulted solar cells outperform those based on PCBM with power conversion efficiency (PCE) increased from 12.9% to 16.7% based on PFN‐2TNDI. In addition to the performance enhancement, it is also found that a wide range of thicknesses of the new ETL can be applied to produce high PCE devices owing to the good electron transport property of the polymer, which offers a better processing window for potential fabrication of perovskite solar cells using large‐area coating method.  相似文献   
30.
Nuclear pore complex (NPC) shuttles cargo across the nuclear envelope. Here we present single-particle cryo-EM structure of the nuclear ring (NR) subunit from Xenopus laevis NPC at an average resolution of 5.6 Å. The NR subunit comprises two 10-membered Y complexes, each with the nucleoporin ELYS closely associating with Nup160 and Nup37 of the long arm. Unlike the cytoplasmic ring (CR) or inner ring (IR), the NR subunit contains only one molecule each of Nup205 and Nup93. Nup205 binds both arms of the Y complexes and interacts with the stem of inner Y complex from the neighboring subunit. Nup93 connects the stems of inner and outer Y complexes within the same NR subunit, and places its N-terminal extended helix into the axial groove of Nup205 from the neighboring subunit. Together with other structural information, we have generated a composite atomic model of the central ring scaffold that includes the NR, IR, and CR. The IR is connected to the two outer rings mainly through Nup155. This model facilitates functional understanding of vertebrate NPC.Subject terms: Cryoelectron microscopy, Nuclear envelope  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号