首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4877篇
  免费   542篇
  国内免费   799篇
  6218篇
  2024年   29篇
  2023年   139篇
  2022年   205篇
  2021年   333篇
  2020年   245篇
  2019年   313篇
  2018年   246篇
  2017年   184篇
  2016年   294篇
  2015年   365篇
  2014年   424篇
  2013年   450篇
  2012年   468篇
  2011年   464篇
  2010年   279篇
  2009年   222篇
  2008年   269篇
  2007年   194篇
  2006年   163篇
  2005年   122篇
  2004年   120篇
  2003年   118篇
  2002年   110篇
  2001年   78篇
  2000年   54篇
  1999年   58篇
  1998年   36篇
  1997年   40篇
  1996年   26篇
  1995年   20篇
  1994年   22篇
  1993年   24篇
  1992年   22篇
  1991年   17篇
  1990年   20篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1950年   1篇
排序方式: 共有6218条查询结果,搜索用时 15 毫秒
991.
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABAA receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABAA receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.Most general anesthetics alter the activity of ligand-gated ion channels, and electrophysiology, photolabeling, and transgenic animal experiments imply that this effect contributes to the mechanism of anesthesia (19). Although the molecular mechanism for this effect is not yet clear, photolabeling studies indicate that anesthetics bind within the transmembrane regions of Cys-loop ligand-gated ion channels such as the nicotinic acetylcholine and the γ-aminobutyric acid (GABA)2 type A receptors (2, 911). Practical difficulties associated with overexpression, purification, and crystallization of ion channels have thus far stymied investigation of the structural and energetic bases underlying anesthetic recognition. However, general anesthetics also bind specifically to sites in soluble proteins, including firefly luciferase, human serum albumin (HSA), and horse spleen apoferritin (HSAF) (1214), and x-ray crystal structures have been determined for complexes of these proteins with several general anesthetics (1416). In particular, HSAF is an attractive model for studying anesthetic-protein interactions because it has the highest affinity for anesthetics of any protein studied to date, has a unique anesthetic binding site, and is a multimer of 4-helix bundles, much like the putative anesthetic binding regions in ligand-gated channels. In addition, apoferritin is commercially available and crystallizes readily. Most importantly, however, the affinity of HSAF for a broad range of general anesthetics is highly correlated with anesthetic potency, confirming the utility and relevance of this model system (17).Ferritin is a 24-mer iron-binding protein. It sequesters free iron ions, thereby helping to maintain non-toxic levels of iron in the cell and functioning as a cellular iron reservoir (18, 19). Each subunit has a molecular mass of ∼20 kDa and adopts a 4-helix bundle fold. The 24-mer forms a hollow, roughly spherical particle with 432 symmetry. Two ferritin isoforms are found in mammals, heavy (H) and light (L), and 24-mers can contain all H chains, all L chains, or mixtures of varying stoichiometry; the biological significance of the H/L ratio is not yet clear (20).In addition to the large central cavity, the apoferritin 24-mer contains additional, smaller cavities at the dimer interfaces; these smaller cavities are of an appropriate size to accommodate anesthetics. X-ray crystallography has confirmed that this interfacial cavity is the binding site for the inhalational anesthetics halothane and isoflurane, and isothermal titration calorimetry (ITC) measurements have shown that this interfacial site has a relatively high affinity for these anesthetics (Ka values ∼105 m−1) (14).General anesthetics fall into at least two broad classes, inhalational and injectable. Whereas both classes of drugs can induce the amnesia, immobility, and hypnosis associated with anesthesia, molecules in the two classes differ substantially in their chemical and physical properties. Prior to this work, only one crystal structure has been available for an injectable general anesthetic complexed with a protein-propofol, bound to HSA (16). This structure revealed that the propofol binding sites on this protein do not, by and large, overlap with the binding sites for inhalational anesthetics. This raises the question of whether the two types of drug invariably bind to separate sets of targets, or whether they could possibly transduce their effects by binding to a single protein site. To address this question we assessed whether propofol binds to the apoferritin site that had been previously identified as the binding site for inhalational anesthetics. Using x-ray crystallography, calorimetry, and molecular modeling, we show that the two types of anesthetics do indeed share a common binding site. We also investigated structure-binding relationships for a homologous series of propofol-like compounds and found that, remarkably, the energetics of binding to apoferritin precisely match the compound''s abilities to potentiate GABA effects at GABAA receptors, suggesting that similar structural and physicochemical factors mediate anesthetic recognition by both apoferritin and ligand-gated ion channels. This argues for the possibility that anesthetic binding might trigger structural and dynamic alterations in GABAA receptors similar to those observed in apoferritin, and that these changes underlie anesthetic effects.  相似文献   
992.
993.
Cannabinoids, endocannabinoids and marijuana activate two well-characterized cannabinoid receptors (CB-Rs), CB1-Rs and CB2-Rs. The expression of CB1-Rs in the brain and periphery has been well studied, but neuronal CB2-Rs have received much less attention than CB1-Rs. Many studies have now identified and characterized functional glial and neuronal CB2-Rs in the central nervous system. However, many features of CB2-R gene structure, regulation and variation remain poorly characterized in comparison with the CB1-R. In this study, we report on the discovery of a novel human CB2 gene promoter transcribing testis (CB2A) isoform with starting exon located ca 45 kb upstream from the previously identified promoter transcribing the spleen isoform (CB2B). The 5' exons of both CB2 isoforms are untranslated 5'UTRs and alternatively spliced to the major protein coding exon of the CB2 gene. CB2A is expressed higher in testis and brain than CB2B that is expressed higher in other peripheral tissues than CB2A. Species comparison found that the CB2 gene of human, rat and mouse genomes deviated in their gene structures and isoform expression patterns. mCB2A expression was increased significantly in the cerebellum of mice treated with the CB-R mixed agonist, WIN55212-2. These results provide much improved information about CB2 gene structure and its human and rodent variants that should be considered in developing CB2-R-based therapeutic agents.  相似文献   
994.
目的:通过建立系统的HPLC快速检测方法,分析厚朴中主要药用成分厚朴酚与和厚朴酚的含量,确定厚朴的药用价值及开发利用价值.方法:用HPLC法对张家界、隆回及恩施地区的厚朴植株的不同部位的药材中厚朴酚与和厚朴酚的含量进行了含量的分析.结果:结果快速、准确、重现性好、HPLC分析图谱理想.结论:本文所运用的HPLC分析条件能快速准确的鉴定厚朴酚及和厚朴酚的含量,确定厚朴药材的品质,并对混乱的药材市场有一定的监控作用.  相似文献   
995.
PEMFs对绝经后骨质疏松症的影响   总被引:1,自引:0,他引:1  
目的:探讨低频率低强度脉冲电磁场(PEMFs)对绝经后骨质疏松症大鼠的影响.方法:选取3-5月龄雌性SD大鼠,随机分为五组,即阴性对照组(Sham),模型组(Model),阳性对照组(XLGB),脉冲磁场照射组(PEMFs)和给药十照射治疗组(X+P),除Sham实行假性手术外,其余四组经手术分别摘取两侧卵巢(OVX).OVX术后1月按照分组开始治疗,3个月后处死动物,测量大鼠骨转化生化指标(血清ALP,OC和尿DPD),股骨总BMD,BMC,股骨干骺端骨小梁微结构(BV/TV,Conn.D,SMI,Tb·N、Tb·Th、Th·Sp及Tb·Ar),骨生物力学性能(Stress)变化并计算,结果:XLGB、PEMFs、X+P组BMD、BMC、Th·"N、Tb·Th值显著增强,SMI,Th·Sp值显著减小(P<0.01);ALP值有所减小BV/TV,Conn.D值有所增加(P<0.05);Sham组Stress值有明显差异(P<0.01),PEMFs组有一定差异(P<0.05);提示经过磁场照射和(或)药物治疗后股骨生物力学显著增强,骨组织结构骨质疏松症状得到明显改善.结论:PEMFs对绝经后雌激素缺乏引起的OP大鼠有较好的治疗作用.  相似文献   
996.
997.
998.
Background aimsCD24 is markedly overexpressed in ovarian cancer and plays a critical role in ovarian cancer survival and metastasis, rendering it an interesting target for anti-tumor therapy. Using short hairpin RNA (shRNA) targeting CD24, we aimed to investigate the anti-tumor efficacy of CD24 knockdown in ovarian cancer cells in vitro and in vivo.MethodsCD24 shRNA vector (CD24–shRNA) and empty plasmid vector (EP) were transfected into ovarian cancer SKOV3 cells and the knockdown efficacy assessed by Western blot analysis. The effects of CD24 knockdown in SKOV3 cells in vitro, including cell viability and apoptosis, were determined using methyl thiazolyl blue tetrazolium bromide (MTT), flow cytometry and propidium iodide (PI) staining assays. The effects in vivo of CD24 knockdown on angiogenesis, cell proliferation and apoptosis were assessed using immunohistochemistry against CD31, proliferating cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assays.ResultsTransfection of CD24–shRNA effectively down-regulated CD24 expression in vitro and in vivo. Administration of CD24–shRNA into nude mice bearing ovarian cancer significantly suppressed tumor volume growth.ConclusionsKnockdown of CD24 expression by CD24–shRNA significantly inhibited cell viability and induced apoptosis of SKOV3 cells in vitro. Administration with CD24–shRNA in vivo suppressed tumor volume increase by microvessel density (MVD) decrease, cell proliferation inhibition and apoptosis induction. All the data suggested that knockdown of CD24 by shRNA might be a potential therapeutic approach against human ovarian cancer.  相似文献   
999.
1000.
Forest landscape models simulate forest change through time using spatially referenced data across a broad spatial scale (i.e. landscape scale) generally larger than a single forest stand. Spatial interactions between forest stands are a key component of such models. These models can incorporate other spatio-temporal processes such as natural disturbances (e.g. wildfires, hurricanes, outbreaks of native and exotic invasive pests and diseases) and human influences (e.g. harvesting and commercial thinning, planting, fire suppression). The models are increasingly used as tools for studying forest management, ecological assessment, restoration planning, and climate change. In this paper, we define forest landscape models and discuss development, components, and types of the models. We also review commonly used methods and approaches of modeling forest landscapes, their application, and their strengths and weaknesses. New developments in computer sciences, geographic information systems (GIS), remote sensing technologies, decision-support systems, and geo-spatial statistics have provided opportunities for developing a new generation of forest landscape models that are increasingly valuable for ecological research, restoration planning and resource management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号