首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35940篇
  免费   3036篇
  国内免费   3243篇
  42219篇
  2024年   97篇
  2023年   537篇
  2022年   1205篇
  2021年   2015篇
  2020年   1293篇
  2019年   1654篇
  2018年   1501篇
  2017年   1162篇
  2016年   1578篇
  2015年   2251篇
  2014年   2681篇
  2013年   2943篇
  2012年   3392篇
  2011年   3043篇
  2010年   1858篇
  2009年   1633篇
  2008年   1878篇
  2007年   1614篇
  2006年   1442篇
  2005年   1162篇
  2004年   1014篇
  2003年   866篇
  2002年   759篇
  2001年   619篇
  2000年   543篇
  1999年   544篇
  1998年   306篇
  1997年   315篇
  1996年   321篇
  1995年   301篇
  1994年   267篇
  1993年   187篇
  1992年   289篇
  1991年   194篇
  1990年   159篇
  1989年   157篇
  1988年   96篇
  1987年   90篇
  1986年   62篇
  1985年   70篇
  1984年   30篇
  1983年   33篇
  1982年   20篇
  1981年   15篇
  1980年   12篇
  1979年   9篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Chordoma is a malignant bone tumor originating from the embryonic remnants of the notochord. lncRNAs act as competing endogenous RNAs (ceRNAs) and play a critical role in tumor pathology. However, the biological role of lncRNA-NONHSAT024778 and the underlying molecular mechanism in chordoma remains unknown. qRT-PCR was used to analyze the expression changes of NONHSAT024778 and miR-1290 in chordoma tissues and cell lines. Bioinformatics analysis and luciferase reporter assay were applied to detect the targeting binding effect between NONHSAT024778 and miR-1290, and between Robo1 and miR-1290. The effect of NONHSAT024778 on chordoma cell proliferation and invasion and its regulation of miR-1290 by acting as a ceRNA were also investigated. An increased NONHSAT024778 expression was correlated with a decreased miR-1290 level in chordoma tissues. NONHSAT024778 knockdown suppressed the proliferation and invasion of chordoma cells. miR-1290 restored expression rescued the carcinogenic function of NONHSAT024778. Bioinformatics analysis showed that NONHSAT024778 acted as ceRNA to regulate Robo1 via sponging miR-1290 in chordoma cells, thereby promoting chordoma cell malignant progression. In vivo results confirmed the anti-tumor effects of NONHSAT024778 knockdown activating miR-1290 to inhibit the oncogene Robo1. NONHSAT024778 is substantially overexpressed, whereas miR-1290 is decreased in chordoma tissue. NONHSAT024778-miR-1290-Robo1 axis plays a critical role in chordoma tumorigenesis and might be a potential predictive biomarker for the diagnosis and therapeutic target among patients with chordoma.  相似文献   
992.
993.
Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.  相似文献   
994.
995.
LuxR is a TetR family master quorum sensing (QS) regulator activating or repressing expression of hundreds of genes that control collective behaviors in Vibrios with underlying mechanism unknown. To illuminate how this regulator controls expression of various target genes, we applied ChIP-seq and DNase I-seq technologies. Vibrio alginolyticus LuxR controls expression of ∼280 genes that contain either symmetric palindrome (repDNA) or asymmetric (actDNA) binding motifs with different binding profiles. The median number of LuxR binding sites for activated genes are nearly double for that of repressed genes. Crystal structures of LuxR in complex with the respective repDNA and actDNA motifs revealed a new mode of LuxR DNA binding that involves contacts of its N-terminal extension to the minor groove. The N-terminal contacts mediated by Arginine-9 and Arginine-11 differ when LuxR binds to repDNA vs actDNA, leading to higher binding affinity at repressed targets. Moreover, modification of LuxR binding sites, binding profiles, and N-terminal extension have important consequences on QS-regulated phenotypes. These results facilitate fundamental understanding of the high flexibility of mechanisms of LuxR control of gene activation and repression in Vibrio QS, which may facilitate to design QS inhibiting chemicals that interfere with LuxR regulation to effectively control pathogens.  相似文献   
996.
997.
The phycobilisomes (PBSs) of cyanobacteria and red-algae are unique megadaltons light-harvesting protein-pigment complexes that utilize bilin derivatives for light absorption and energy transfer. Recently, the high-resolution molecular structures of red-algal PBSs revealed how the multi-domain core-membrane linker (LCM) specifically organizes the allophycocyanin subunits in the PBS’s core. But, the topology of LCM in these structures was different than that suggested for cyanobacterial PBSs based on lower-resolution structures. Particularly, the model for cyanobacteria assumed that the Arm2 domain of LCM connects the two basal allophycocyanin cylinders, whereas the red-algal PBS structures revealed that Arm2 is partly buried in the core of one basal cylinder and connects it to the top cylinder. Here, we show by biochemical analysis of mutations in the apcE gene that encodes LCM, that the cyanobacterial and red-algal LCM topologies are actually the same. We found that removing the top cylinder linker domain in LCM splits the PBS core longitudinally into two separate basal cylinders. Deleting either all or part of the helix-loop-helix domain at the N-terminal end of Arm2, disassembled the basal cylinders and resulted in degradation of the part containing the terminal emitter, ApcD. Deleting the following 30 amino-acids loop severely affected the assembly of the basal cylinders, but further deletion of the amino-acids at the C-terminal half of Arm2 had only minor effects on this assembly. Altogether, the biochemical data are consistent with the red-algal LCM topology, suggesting that the PBS cores in cyanobacteria and red-algae assemble in the same way.  相似文献   
998.
999.
Recovery time, the time it takes for ecosystems to return to normal states after experiencing droughts, is critical for assessing the response of ecosystems to droughts; however, the spatial dominant factors determining recovery time are poorly understood. We identify the global patterns of terrestrial ecosystem recovery time based on remote sensed vegetation indices, analyse the affecting factors of recovery time using random forest regression model, and determine the spatial distribution of the dominant factors of recovery time based on partial correlation. The results show that the global average recovery time is approximately 3.3 months, and that the longest recovery time occurs in mid-latitude drylands. Analysis of affecting factors of recovery time suggests that the most important environmental factor affecting recovery time is soil moisture during the recovery period, followed by temperature and vapour pressure deficit (VPD). Recovery time shortens with increasing soil moisture and prolongs with increasing VPD; however, the response of recovery time to temperature is nonmonotonic, with colder or hotter temperatures leading to longer recovery time. Soil moisture dominates the drought recovery time over 58.4% of the assessed land area, mostly in the mid-latitudes. The concern is that soil moisture is projected to decline in more than 65% regions in the future, which will lengthen the drought recovery time and exacerbate drought impacts on terrestrial ecosystems, especially in southwestern United States, the Mediterranean region and southern Africa. Our research provides methodological insights for quantifying recovery time and spatially identifies dominant factors of recovery time, improving our understanding of ecosystem response to drought.  相似文献   
1000.
Significant attention has been given to the way in which the soil nitrogen (N) cycle responds to permafrost thaw in recent years, yet little is known about anaerobic N transformations in thermokarst lakes, which account for more than one-third of thermokarst landforms across permafrost regions. Based on the N isotope dilution and tracing technique, combined with qPCR and high-throughput sequencing, we presented large-scale measurements of anaerobic N transformations of sediments across 30 thermokarst lakes over the Tibetan alpine permafrost region. Our results showed that gross N mineralization, ammonium immobilization, and dissimilatory nitrate reduction rates in thermokarst lakes were higher in the eastern part of our study area than in the west. Denitrification dominated in the dissimilatory nitrate reduction processes, being two and one orders of magnitude higher than anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA), respectively. The abundances of the dissimilatory nitrate reduction genes (nirK, nirS, hzsB, and nrfA) exhibited patterns consistent with sediment N transformation rates, while α diversity did not. The inter-lake variability in gross N mineralization and ammonium immobilization was dominantly driven by microbial biomass, while the variability in anammox and DNRA was driven by substrate supply and organic carbon content, respectively. Denitrification was jointly affected by nirS abundance and organic carbon content. Overall, the patterns and drivers of anaerobic N transformation rates detected in this study provide a new perspective on potential N release, retention, and removal upon the formation and development of thermokarst lakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号