首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24623篇
  免费   2063篇
  国内免费   2636篇
  2024年   45篇
  2023年   368篇
  2022年   608篇
  2021年   1378篇
  2020年   927篇
  2019年   1214篇
  2018年   1042篇
  2017年   791篇
  2016年   1192篇
  2015年   1561篇
  2014年   1955篇
  2013年   2026篇
  2012年   2450篇
  2011年   2161篇
  2010年   1375篇
  2009年   1214篇
  2008年   1326篇
  2007年   1111篇
  2006年   949篇
  2005年   807篇
  2004年   714篇
  2003年   642篇
  2002年   557篇
  2001年   370篇
  2000年   364篇
  1999年   361篇
  1998年   234篇
  1997年   224篇
  1996年   218篇
  1995年   170篇
  1994年   152篇
  1993年   105篇
  1992年   153篇
  1991年   124篇
  1990年   108篇
  1989年   83篇
  1988年   56篇
  1987年   36篇
  1986年   30篇
  1985年   43篇
  1984年   19篇
  1983年   23篇
  1982年   14篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Featuring pronounced controllability, versatility, and scalability, electrophoretic deposition (EPD) has been proposed as an efficient method for film assembly and electrode/solid electrolyte fabrication in various energy storage/conversion devices including rechargeable batteries, supercapacitors, and fuel cells. High‐quality electrodes and solid electrolytes have been prepared through EPD and exhibit advantageous performances in comparison with those realized with traditional methods. Recent advances in the application of EPD materials in electrochemical energy storage and conversion devices are summarized. In particular, the parameters that influence the efficiency of an EPD process from colloidal preparation to deposition are evaluated with the aim to provide insightful guidance for realizing high‐performance electrochemical energy conversion materials and devices.  相似文献   
993.
Despite the unfavorable band structure with twofold degeneracy at the valence band maximum, MgAgSb is still an excellent p‐type thermoelectric material for applications near room temperature. The intrinsically weak electron–phonon coupling, reflected by the low deformation potential Edef ≈ 6.3 eV, plays a crucial role in the relatively high power factor of MgAgSb. More importantly, Li is successfully doped into Mg site to tune the carrier concentration, leading to the resistivity reduction by a factor of 3 and a consequent increase in power factor by ≈30% at 300 K. Low lattice thermal conductivity can be simultaneously achieved by all‐scale hierarchical phonon scattering architecture including high density of dislocations and nanoscale stacking faults, nanoinclusions, and multiscale grain boundaries. Collectively, much higher average power factor ≈25 μW cm?1 K?2 with a high average ZT ≈ 1.1 from 300 to 548 K is achieved for 0.01 Li doping, which would result in a high output power density ≈1.56 W cm?2 and leg efficiency ≈9.2% by calculations assuming cold‐side temperature Tc = 323 K, hot‐side temperature Th = 548 K, and leg length = 2 mm.  相似文献   
994.
995.
996.
997.
The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.  相似文献   
998.
999.
The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products’ mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.  相似文献   
1000.
The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought‐resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought‐resistant species and may benefit future agricultural production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号