Multidrug resistance protein 1 (MRP1) is capable of actively transporting a wide range of conjugated and unconjugated organic anions. The protein can also transport additional conjugated and unconjugated compounds in a GSH- or S-methyl GSH-stimulated manner. How MRP1 binds and transports such structurally diverse substrates is not known. We have used [(3)H]leukotriene C(4) (LTC(4)), a high affinity glutathione-conjugated physiological substrate, to photolabel intact MRP1, as well as fragments of the protein expressed in insect cells. These studies revealed that: (i) LTC(4) labels sites in the NH(2)- and COOH-proximal halves of MRP1, (ii) labeling of the NH(2)-half of MRP1 is localized to a region encompassing membrane-spanning domain (MSD) 2 and nucleotide binding domain (NBD) 1, (iii) labeling of this region is dependent on the presence of all or part of the cytoplasmic loop (CL3) linking MSD1 and MSD2, but not on the presence of MSD1, (iv) labeling of the NH(2)-proximal site is preferentially inhibited by S-methyl GSH, (v) labeling of the COOH-proximal half of the protein occurs in a region encompassing transmembrane helices 14-17 and appears not to require NBD2 or the cytoplasmic COOH-terminal region of the protein, (vi) labeling of intact MRP1 by LTC(4) is strongly attenuated in the presence of ATP and vanadate, and this decrease in labeling is attributable to a marked reduction in LTC(4) binding to the NH(2)-proximal site, and (vii) the attenuation of LTC(4) binding to the NH(2)-proximal site is a consequence of ATP hydrolysis and trapping of Vi-ADP exclusively at NBD2. These data suggest that MRP1-mediated transport involves a conformational change, driven by ATP hydrolysis at NBD2, that alters the affinity with which LTC(4) binds to one of two sites composed, at least in part, of elements in the NH(2)-proximal half of the protein. 相似文献
Cancer-associated fibroblasts (CAFs) have been shown to play a strong role in colorectal cancer metastasis, yet the underlying mechanism remains to be fully elucidated. Using CRC clinical samples together with ex vivo CAFs-CRC co-culture models, we found that CAFs induce expression of Leucine Rich Alpha-2-Glycoprotein 1(LRG1) in CRC, where it shows markedly higher expression in metastatic CRC tissues compared to primary tumors. We further show that CAFs-induced LRG1 promotes CRC migration and invasion that is concomitant with EMT (epithelial-mesenchymal transition) induction. In addition, this signaling axis has also been confirmed in the liver metastatic mouse model which displayed CAFs-induced LRG1 substantially accelerates metastasis. Mechanistically, we demonstrate that CAFs-secreted IL-6 (interleukin-6) is responsible for LRG1 up-regulation in CRC, which occurs through a direct transactivation by STAT3 following JAK2 activation. In clinical CRC tumor samples, LRG1 expression was positively correlated with CAFs-specific marker, α-SMA, and a higher LRG1 expression predicted poor clinical outcomes especially distant metastasis free survival, supporting the role of LRG1 in CRC progression. Collectively, this study provided a novel insight into CAFs-mediated metastasis in CRC and indicated that therapeutic targeting of CAFs-mediated IL-6-STAT3-LRG1 axis might be a potential strategy to mitigate metastasis in CRC.Subject terms: Colon cancer, Cancer microenvironment相似文献
High-quality rice reference genomes have accelerated the comprehensive identification of genome-wide variations and research on functional genomics and breeding. Tian-you-hua-zhan has been a leading hybrid in China over the past decade. Here, de novo genome assembly strategy optimization for the rice indica lines Huazhan (HZ) and Tianfeng (TF), including sequencing platforms, assembly pipelines and sequence depth, was carried out. The PacBio and Nanopore platforms for long-read sequencing were utilized, with the Canu, wtdbg2, SMARTdenovo, Flye, Canu-wtdbg2, Canu-SMARTdenovo and Canu-Flye assemblers. The combination of PacBio and Canu was optimal, considering the contig N50 length, contig number, assembled genome size and polishing process. The assembled contigs were scaffolded with Hi-C data, resulting in two “golden quality” rice reference genomes, and evaluated using the scaffold N50, BUSCO, and LTR assembly index. Furthermore, 42,625 and 41,815 non-transposable element genes were annotated for HZ and TF, respectively. Based on our assembly of HZ and TF, as well as Zhenshan97, Minghui63, Shuhui498 and 9311, comprehensive variations were identified using Nipponbare as a reference. The de novo assembly strategy for rice we optimized and the “golden quality” rice genomes we produced for HZ and TF will benefit rice genomics and breeding research, especially with respect to uncovering the genomic basis of the elite traits of HZ and TF.
A novel pink-coloured, non-spore-forming, non-motile, Gram-negative bacterium, designated YIM 48858T, is described by using a polyphasic approach. The strain can grow at pH 6.5–9 (optimum at pH 7) and 25–30°C (optimum at 28°C).
NaCl is not required for its growth. Positive for oxidase and catalase. Urease activity, nitrate reduction, starch and Tween
80 tests are negative reaction. 16S rRNA gene sequence similarity studies showed that strain YIM 48858T is a member of the genus Rubellimicrobium, with similarities of 96.3, 95.7 and 95.5% to Rubellimicrobium mesophilum MSL-20T, Rubellimicrobium aerolatum 5715S-9T and Rubellimicrobiumthermophilum DSM 16684T, respectively. Q-10 was the predominant respiratory ubiquinone as in the other members of the genus Rubellimicrobium. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphoglycolipid, glycolipid and the major fatty
acids were C18:1 ω7c, C16:0 and C10:0 3-OH, which are very different from the valid published species. The DNA G + C content
was 67.7 mol%. Both phylogenetic and chemotaxonomic evidence supports that YIM 48858T is a novel species of the genus Rubellimicrobium, for which the name Rubellimicrobium roseum sp. nov. is proposed. The type strain is YIM 48858T (=CCTCC AA 208029T =KCTC 23202T). 相似文献
Based on a shared structural core of diarylamine in several known anticancer drugs as well as a new cytotoxic hit 6-chloro-2-(4-cyanophenyl)amino-3-nitropyridine (7), 30 diarylamines and diarylethers were designed, synthesized, and evaluated for cytotoxic activity against A549, KB, KB-vin, and DU145 human tumor cell lines (HTCL). Four new leads 11e, 12, 13a, and 13b were discovered with GI(50) values ranging from 0.33 to 3.45μM. Preliminary SAR results revealed that a diarylamine or diarylether could serve as an active structural core, meta-chloro and ortho-nitro groups on the A-ring (either pyridine or phenyl ring) were necessary and crucial for cytotoxic activity, and the para-substituents on the other phenyl ring (B-ring) were related to inhibitory selectivity for different tumor cells. In an investigation of potential biological targets of the new leads, high thoughput kinase screening discovered that new leads 11e, 12 and 13b especially inhibit Mer tyrosine kinase, a proto-oncogene associated with munerous tumor types, with IC(50) values of 2.2-3.0μM. Therefore, these findings provide a good starting point to optimize a new class of compounds as potential anticancer agents, particularly targeting Mer tyrosine kinase. 相似文献