首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11081篇
  免费   937篇
  国内免费   1575篇
  2024年   39篇
  2023年   199篇
  2022年   381篇
  2021年   687篇
  2020年   522篇
  2019年   625篇
  2018年   500篇
  2017年   393篇
  2016年   520篇
  2015年   746篇
  2014年   886篇
  2013年   883篇
  2012年   1094篇
  2011年   944篇
  2010年   557篇
  2009年   506篇
  2008年   612篇
  2007年   462篇
  2006年   439篇
  2005年   389篇
  2004年   367篇
  2003年   273篇
  2002年   256篇
  2001年   203篇
  2000年   172篇
  1999年   153篇
  1998年   117篇
  1997年   96篇
  1996年   70篇
  1995年   90篇
  1994年   59篇
  1993年   50篇
  1992年   52篇
  1991年   42篇
  1990年   39篇
  1989年   46篇
  1988年   25篇
  1987年   22篇
  1986年   16篇
  1985年   20篇
  1984年   13篇
  1983年   15篇
  1982年   8篇
  1981年   3篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The viral proteases have proven to be the most selective and useful for removing the fusion tags in fusion protein expression systems. As a key enzyme in the viral life-cycle, the main protease (M(pro)) is most attractive for drug design targeting the SARS coronavirus (SARS-CoV), the etiological agent responsible for the outbreak of severe acute respiratory syndrome (SARS) in 2003. In this study, SARS-CoV M(pro) was used to specifically remove the GST tag in a new fusion protein expression system. We report a new method to produce wild-type (WT) SARS-CoV M(pro) with authentic N and C termini, and compare the activity of WT protease with those of three different types of SARS-CoV M(pro) with additional residues at the N or C terminus. Our results show that additional residues at the N terminus, but not at the C terminus, of M(pro) are detrimental to enzyme activity. To explain this, the crystal structures of WT SARS-CoV M(pro) and its complex with a Michael acceptor inhibitor were determined to 1.6 Angstroms and 1.95 Angstroms resolution respectively. These crystal structures reveal that the first residue of this protease is important for sustaining the substrate-binding pocket and inhibitor binding. This study suggests that SARS-CoV M(pro) could serve as a new tag-cleavage endopeptidase for protein overproduction, and the WT SARS-CoV M(pro) is more appropriate for mechanistic characterization and inhibitor design.  相似文献   
992.
Zhao QT  Yue SQ  Cui Z  Wang Q  Cui X  Zhai HH  Zhang LH  Dou KF 《Life sciences》2007,80(5):484-492
Angiogenesis plays a crucial role in tumor development and growth. The present study was carried out to investigate the potential involvement of the cyclooxygenase-2 (Cox-2) pathway in the regulation of angiogenesis in hepatocellular carcinoma (HCC). We inhibited Cox-2 expression in HCC cell line HuH-7 by selective Cox-2 inhibitor (SC-58635) or Cox-2 siRNA. Conditioned media (CMs) from HuH-7 cells were used in angiogenic assays in vitro and in vivo. Compared with CMs from untreated and negative siRNA treated HuH-7 cells, CMs from SC-58635 and Cox-2 siRNA treated HuH-7 dramatically suppressed the proliferation, migration, and differentiation of human umbilical vein endothelial cells (HUVECs) in vitro and neovascularization in vivo. These inhibitory effects could be partially reversed by the addition of exogenous PGE2 to CMs. Furthermore, Cox-2 inhibition by SC-58635 resulted in PGE2 reduction accompanied by the down-regulation of four PGE2 receptor (EP receptor) subtypes. Treatment with SC-58635 led to the down-expression of proangiogenic factors such as VEGF, HGF, FGF2, ANGPT1 and ANGPT2 in HCC. An approximately 78% reduction of VEGF level has been found in the CM from SC-58635 treated HuH-7. Our results suggest an involvement of Cox-2 in the control of HCC-associated angiogenesis. PGE2 as a vital angiogenic factor may act directly on endothelial cells to promote HuH-7-stimulated angiogenic process. Moreover, Cox-2/PGE2/EP/VEGF pathway possibly also contributes to tumor angiogenesis in HCC. This study provides the rationale for clinical studies of Cox-2 inhibitors on the treatment or chemoprevention of HCC.  相似文献   
993.
体内能量代谢是维持机体正常生理活动的基础,而脂肪细胞的脂解是能量代谢的核心反应之一,调控脂肪酸从TG库释放,后由血清白蛋白转运至体内各个组织以满足能量需要。如果脂解作用出现障碍,就会影响机体能量的平衡进而引发肥胖和胰岛素抵抗等疾病。表没食子儿茶素没食子酸酯(Epig  相似文献   
994.
Pan CS  Jin SJ  Cao CQ  Zhao J  Zhang J  Wang X  Tang CS  Qi YF 《Peptides》2007,28(4):900-909
In this work we aimed to observe (1) the changes in adrenomedullin (AM) and its receptor system - calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) - in myocardial ischemic injury and (2) the response of injuried myocardia to AM and the phosphorylation of Akt to illustrate the protective mechanism of AM in ischemic myocardia. Male SD rats were subcutaneously injected with isoproterenol (ISO) to induce myocardial ischemia. The mRNA levels of AM, CRLR, RAMP1, RAMP2 and RAMP3 were determined by RT-PCR. Protein levels of Akt, phosphor-Akt, CRLR, RAMP1, RAMP2 and RAMP3 were assayed by Western blot. Results showed that, compared with that of the controls, ISO-treated rats showed lower cardiac function and myocardial injury. The mRNA relative amount of AM, CRLR, RAMP1, RAMP2 and RAMP3 in the myocardia of ISO-treated rats was increased. The elevated mRNA levels of CRLR, RAMP1, RAMP2 and RAMP3 were positively correlated with AM content in injured myocardia. The protein levels of CRLR, RAMP1, RAMP2 and RAMP3 in injured myocardia were increased compared with that of control myocardia. AM-stimulated cAMP generation in myocardia was elevated in the ISO group, and was antagonized by AM(22-52) and CGRP(8-37). Western blot analyses revealed that AM significantly enhanced Akt phosphorylation in injured myocardia, which was blocked by pretreatment with AM(22-52) or CGRP(8-37). Ischemia-injured myocardia hyper-expressed AM and its receptors - CRLR, RAMP1, RAMP2 and RAMP3 - and the response of ischemic myocardia to AM was potentiated, and the level of Akt phosphorylation was also increased, which suggests that changes in cardiac AM/AM receptor might play an important role in the pathogenesis of myocardial ischemic injury.  相似文献   
995.
Jia YX  Lu ZF  Zhang J  Pan CS  Yang JH  Zhao J  Yu F  Duan XH  Tang CS  Qi YF 《Peptides》2007,28(10):2023-2029
Apelin was recently found to be an inotropic polypeptide in isolated rat hearts, and intravenous injection of apelin can induce a transient decrease in blood pressure. To illustrate the mechanism of apelin-induced vasodilation, we observed the in vitro effects of apelin on the L-arginine (L-Arg)/nitric oxide (NO) pathway in the incubated, isolated rat aorta. Apelin stimulated vascular NO(2)(-) product and NOS activation in a concentration- and time-dependent manner. Compared with no apelin treatment, incubation with apelin (10(-9), 10(-8), and 10(-7)mol/L) increased NO(2)(-) product by 33%, 46%, and 69% (all p<0.01), respectively, and Ca(2+)-dependent constitutive NOS (cNOS) activity by 200%, 460%, and 550% (all p<0.01), respectively. However, Ca(2+)-independent NOS (iNOS) activity was not significantly altered (p>0.05). Apelin incubation (10(-9), 10(-8), and 10(-7)mol/L) increased L-Arg uptake by 130%, 180%, and 240% (all p<0.01), respectively. The mRNA level of cationic amino acid transporters, CAT-1 and CAT-2B, in rat aortic tissues treated with 10(-7)mol/L apelin was increased by 110% and 128%, respectively (both p<0.01). Incubation with 10(-7)mol/L apelin elevated eNOS mRNA and protein levels, by 53% (p<0.05) and 319% (p<0.01), respectively. Collectively, these results demonstrate that apelin directly activated the vascular L-Arg/NOS/NO pathway, which could be one of the important mechanisms of apelin-regulated vascular function.  相似文献   
996.
The protein kinase activity of the DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs) via the process of nonhomologous end joining (NHEJ). However, to date, the only target shown to be functionally relevant for the enzymatic role of DNA-PK in NHEJ is the large catalytic subunit DNA-PKcs itself. In vitro, autophosphorylation of DNA-PKcs induces kinase inactivation and dissociation of DNA-PKcs from the DNA end-binding component Ku70/Ku80. Phosphorylation within the two previously identified clusters of phosphorylation sites does not mediate inactivation of the assembled complex and only partially regulates kinase disassembly, suggesting that additional autophosphorylation sites may be important for DNA-PK function. Here, we show that DNA-PKcs contains a highly conserved amino acid (threonine 3950) in a region similar to the activation loop or t-loop found in the protein kinase domain of members of the typical eukaryotic protein kinase family. We demonstrate that threonine 3950 is an in vitro autophosphorylation site and that this residue, as well as other previously identified sites in the ABCDE cluster, is phosphorylated in vivo in irradiated cells. Moreover, we show that mutation of threonine 3950 to the phosphomimic aspartic acid abrogates V(D)J recombination and leads to radiation sensitivity. Together, these data suggest that threonine 3950 is a functionally important, DNA damage-inducible phosphorylation site and that phosphorylation of this site regulates the activity of DNA-PKcs.  相似文献   
997.
998.
Yin J  Qi R  Ma Y  Sun Z  Wang H 《Biochemical genetics》2007,45(11-12):815-821
DNA repair genes are increasingly studied because of their critical role in maintaining genome integrity. The base excision repair (BER) pathway is a DNA repair pathway that operates on small lesions, such as oxidized or reduced bases, fragmented or nonbulky adducts, or those produced by methylating agents. The XRCC1 polymorphic system is the key gene of the BER pathway. In this study, polymorphisms of XRCC1 Pro206Pro on exon 7 and Gln632Gln on exon 17 were analyzed in a northeastern Chinese Han population. Genomic DNA extracted from 303 unrelated individuals and the PCR-RFLP technique were used to identify variants. The allele frequencies were 0.90 (A) and 0.10 (G) for XRCC1 Pro206Pro and 0.88 (G) and 0.12 (A) for XRCC1 Gln632Gln. The genotype frequencies were 0.797 (AA), 0.203 (AG), and 0 (GG) for XRCC1 Pro206Pro and 0.007 (AA), 0.222 (AG), and 0.771 (GG) for XRCC1 Gln632Gln. The expected heterozygosity and PIC were 18 and 16.38% for Pro206Pro and 21.12 and 18.89% for Gln632Gln. The two polymorphisms were in strong linkage disequilibrium (D' = 0.921, r (2) = 0.735). The results are compared with those of other reported populations. They showed marked ethnic group differences. This study provides the first analysis of the distribution of allele frequency for XRCC1 Pro206Pro and Gln632Gln in a Chinese population.  相似文献   
999.
Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membranes, respectively, of strain S85 and adhesion-defective mutant strains in conjunction with mass spectrometry analysis of tryptic peptides was used to identify proteins with roles in adhesion to and digestion of cellulose. Examination of the binding to cellulose of detergent-solubilized outer membrane proteins from S85 and mutant strains revealed six proteins in S85 that bound to crystalline cellulose that were absent from the mutants and five proteins in Ad1 that bound to acid-swollen cellulose that were absent from Ad4. Twenty-five proteins from the outer membrane fraction of cellulose-grown F. succinogenes were identified by 2-DE, and 16 of these were up-regulated by growth on cellulose compared to results with growth on glucose. A protein identified as a Cl-stimulated cellobiosidase was repressed in S85 cells growing on glucose and further repressed in the mutants, while a cellulose-binding protein identified as pilin was unchanged in S85 grown on glucose but was not produced by the mutants. The candidate differential cellulose binding proteins of S85 and the mutants and the proteins induced by growth of S85 on cellulose provide the basis for dissecting essential components of the cellulase system of F. succinogenes.  相似文献   
1000.
Zhou J  Zhang H  Liu X  Wang PG  Qi Q 《Current microbiology》2007,55(3):198-204
The N-glycosylation mutants (mnn1 and mnn1 och1) show different morphological characteristics at the restrictive and nonpermissive temperature. We deleted the MNN1 to eliminate the terminal α1, 3-linked mannose of hypermannosylation and deleted the OCH1 to block the elongation of the main backbone chain. The mnn1 cells exhibited no observable change with respect to the wild-type strain at 28°C and 37°C, but the mnn1 och1 double mutant exhibited defects in cell cytokinesis, showed a slower growth rate, and became temperature-sensitive. Meanwhile, the mnn1 och1 mutant tended to aggregate, which was probably due to the glycolsylation defect. Loss of mannosyl-phosphate-accepting sites in this mutant migth result in reduced charge repulsion between cell surfaces. Pyridylaminated glycans were profiled and purified through an NH2 column by size-fractionation high-performance liquid chromatography. Matrix assisted laser desoption/ionization time of flight mass spectrometry (MALDI TOF/MS) analysis of the N-glycan structure of the mnn1 och1 mutant revealed that the main component is Man8GlcNAc2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号