首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   6篇
  238篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2018年   7篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   11篇
  2013年   12篇
  2012年   10篇
  2011年   14篇
  2010年   8篇
  2009年   19篇
  2008年   21篇
  2007年   17篇
  2006年   17篇
  2005年   14篇
  2004年   10篇
  2003年   7篇
  2002年   3篇
  2001年   7篇
  2000年   1篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1965年   1篇
排序方式: 共有238条查询结果,搜索用时 0 毫秒
11.
This study reports characterization of a biosurfactant‐producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS‐8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant‐producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m?1) with a critical micelle concentration of ≥ 1.2 mg mL?1. During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L?1 pure biosurfactant having significant emulsifying index (E24, 70%) and oil‐displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS‐8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1065–1075, 2014  相似文献   
12.
Three-dimensional electron microscopy reconstructions of native, half-transformed, and transformed alpha2-macroglobulins (alpha2Ms) labeled with a monoclonal Fab Fab offer new insight into the mechanism of its proteinase entrapment. Each alpha2M binds four Fabs, two at either end of its dimeric protomers approximately 145 A apart. In the native structure, the epitopes are near the base of its two chisel-like features, laterally separated by 120 A, whereas in the methylamine-transformed alpha2M, the epitopes are at the base of its four arms, laterally separated by 160 A. Upon thiol ester cleavage, the chisels on the native alpha2M appear to split with a separation and rotation to give the four arm-like extensions on transformed alpha2M. Thus, the receptor binding domains previously enclosed within the chisels are exposed. The labeled structures further indicate that the two protomeric strands that constitute the native and transformed molecules are related and reside one on each side of the major axes of these structures. The half-transformed structure shows that the two Fabs at one end of the molecule have an arrangement similar to those on the native alpha2M, whereas on its transformed end, they have rotated. The rotation is associated with a partial untwisting of the strands and an enlargement of the openings to the cavity. We propose that the enlarged openings permit the entrance of the proteinase. Then cleavage of the remaining bait domains by a second proteinase occurs with its entrance into the cavity. This is followed by a retwisting of the strands to encapsulate the proteinases and expose the receptor binding domains associated with the transformed alpha2M.  相似文献   
13.
An essential oil from a lemon grass variety of Cymbopogon flexuosus (CFO) and its major chemical constituent sesquiterpene isointermedeol (ISO) were investigated for their ability to induce apoptosis in human leukaemia HL-60 cells because dysregulation of apoptosis is the hallmark of cancer cells. CFO and ISO inhibited cell proliferation with 48 h IC50 of approximately 30 and 20 microg/ml, respectively. Both induced concentration dependent strong and early apoptosis as measured by various end-points, e.g. annexinV binding, DNA laddering, apoptotic bodies formation and an increase in hypo diploid sub-G0 DNA content during the early 6h period of study. This could be because of early surge in ROS formation with concurrent loss of mitochondrial membrane potential observed. Both CFO and ISO activated apical death receptors TNFR1, DR4 and caspase-8 activity. Simultaneously, both increased the expression of mitochondrial cytochrome c protein with its concomitant release to cytosol leading to caspase-9 activation, suggesting thereby the involvement of both the intrinsic and extrinsic pathways of apoptosis. Further, Bax translocation, and decrease in nuclear NF-kappaB expression predict multi-target effects of the essential oil and ISO while both appeared to follow similar signaling apoptosis pathways. The easy and abundant availability of the oil combined with its suggested mechanism of cytotoxicity make CFO highly useful in the development of anti-cancer therapeutics.  相似文献   
14.

Background

Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies.

Methods

The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide.

Results

Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol.

Conclusions

The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.  相似文献   
15.
Gluconobacter oxydans: its biotechnological applications   总被引:1,自引:0,他引:1  
Gluconobacter oxydans is a gram-negative bacterium belonging to the family Acetobacteraceae. G. oxydans is an obligate aerobe, having a respiratory type of metabolism using oxygen as the terminal electron acceptor. Gluconobacter strains flourish in sugary niches e.g. ripe grapes, apples, dates, garden soil, baker's soil, honeybees, fruit, cider, beer, wine. Gluconobacter strains are non-pathogenic towards man and other animals but are capable of causing bacterial rot of apples and pears accompanied by various shades of browning. Several soluble and particulate polyol dehydrogenases have been described. The organism brings about the incomplete oxidation of sugars, alcohols and acids. Incomplete oxidation leads to nearly quantitative yields of the oxidation products making G. oxydans important for industrial use. Gluconobacter strains can be used industrially to produce L-sorbose from D-sorbitol; D-gluconic acid, 5-keto- and 2-ketogluconic acids from D-glucose; and dihydroxyacetone from glycerol. It is primarily known as a ketogenic bacterium due to 2,5-diketogluconic acid formation from D-glucose. Extensive fermentation studies have been performed to characterize its direct glucose oxidation, sorbitol oxidation, and glycerol oxidation. The enzymes involved have been purified and characterized, and molecular studies have been performed to understand these processes at the molecular level. Its possible application in biosensor technology has also been worked out. Several workers have explained its basic and applied aspects. In the present paper, its different biotechnological applications, basic biochemistry and molecular biology studies are reviewed.  相似文献   
16.

Plants face different types of stresses, including biotic and abiotic stresses. Among various abiotic stress, low-temperature stress alters various morphological, cytological, physiological, and other biochemical processes in plants. To thrive in such condition’s plants must adopt some strategy. Out of various strategies, the approach of using plant growth regulators (PGRs) gained a prominent role in the alleviation of multiple stresses. Salicylic acid, application triggers tolerance to both biotic and abiotic stresses via regulation of various morpho-physiological, cytological, and biochemical attributes. SA is shown to alleviate and regulate the various cold-induced changes. Both endogenous and exogenously applied SA show an imperative role in the alleviation of cold-induced changes by activating multiple signaling pathways like ABA-dependent or independent pathway, Ca2+ signaling pathway, mitogen-activated protein kinase (MAPKs) pathway, reactive oxygen species (ROS), and reactive nitrogen species (RNS) pathways. Activation of these pathways leads to the amelioration of the cold-induced changes by increasing production of antioxidants, osmolytes, HSPs and other cold-responsive proteins like LEA, dehydrins, AFPs, PR proteins, and various other proteins. This review describes the tolerance of cold stress by SA in plants through the involvement of different stress signaling pathways.

  相似文献   
17.
Hydrogen peroxide (H2O2) in minute quantity serves as a signalling molecule. However, the role of H2O2 in combination with brassinosteroids (stress regulators) in plants under toxic levels of copper, is poorly understood. With an aim to explore and elaborate their role in plants subjected to abiotic stress, the surface sterilized seeds of mung bean (Vigna radiata) were sown in earthen pots filled with soil and manure enriched with different levels of Cu2+ (50 or 100 mg kg?1 of soil) and allowed to grow under natural environmental conditions. At 15 and 20 days stage, the plants were sprayed with H2O2 (2.5 mM) and/or 28-homobrassinolide (HBL, 10?5 mM), respectively. At 45 days stage, the analysis of the plants revealed that the presence of copper in the soil caused a significant decrease in growth characteristics, activity of carbonic anhydrase and nitrate reductase, relative water content, chlorophyll content and the rate of photosynthesis whereas, the activity of antioxidant enzymes (catalase, peroxidase and superoxide dismutase) and the proline accumulation in leaves increased in Cu stressed plants. However, the exogenously applied HBL and/or H2O2, in the absence of Cu-stress strongly favoured the growth, photosynthetic parameters and also improved the activity of antioxidant enzymes and the proline content. Furthermore, the combined application of HBL and H2O2 to the foliage of the stressed plants neutralized the toxic impact of all copper regimes. Therefore, we are of the opinion that these chemicals somehow maintained the homeostasis of the metal in the plants that exhibit healthy growth.  相似文献   
18.
(R)- and (S)-1-chloro-3-(1-naphthyloxy)-2-propanol are intermediates in the synthesis of β-adrenergic blocking agents and antihypertensive drugs such as propranolol and nadoxolol. Herein, improvement in the preparation of racemic 1-chloro-3-(1-naphthyloxy)-2-propanol generated from 1-naphthol and epichlorohydrin are reported. In addition, kinetic resolution studies have been conducted to obtain both (R) and (S)-1-chloro-3-(1-naphthyloxy)-2-propanol. These compounds were obtained in highly optically pure form by the stereoselective hydrolysis of its acyl derivatives using whole cell preparations containing enzymes from native sources. The results were compared with those obtained using commercial lipases.  相似文献   
19.
Oxidation of glucose to 2,5-diketogluconic acid by Erwinia herbicola was inhibited at 100% dissolved O2 tension (DOT) relative to air at 1 atm. Gluconic acid accumulation, however, increased under this condition. The negative influence of the high DOT is attributed to a 10-fold decrease in 2-ketogluconate dehydrogenase activity.The authors are with the Department of Biotechnology, Regional Research Laboratory, Canal Road, Jammu Tawi-180001, India  相似文献   
20.
Hollow fiber membrane offers the advantage to integrate catalytic conversion, product separation and catalyst recovery into a single separation process compared to conventional systems. Polypropylene (PP) hollow fiber membrane is a chemically inert and stable membrane with high potential for enzyme immobilization. The surface properties of polypropylene have been modified by radiation induced graft polymerization. Samples were prepared by grafting of glycidylmethacrylate (GMA) using gamma radiation, at different monomer concentrations and irradiation dose. The resulting epoxy was converted into a diethylamino group as an anion-exchange medium to bind the lipase molecules. Surface properties of the grafted and amine treated samples were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and contact angle measurements. AFM revealed higher surface roughness for grafted samples than that of virgin polymer. SEM micrographs illustrated that the porous network was retained at high degree of grafting. Contact angle measurements showed excellent wetting properties with water for the grafted and amine treated membranes. Thermal properties were studied using differential scanning calorimeter (DSC) and thermogravimetic analysis (TGA). It was observed that grafting occurred mainly in the amorphous region of the membranes. Activity and operational stability of ABL lipase, isolated from Arthobacter sp. were assayed after immobilizing it to the modified PP hollow fiber. Immobilized lipase retained 20U/g activity after ten hydrolysis cycles and 68% residual activity after 12 weeks of storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号