首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11561篇
  免费   1117篇
  国内免费   1779篇
  2024年   29篇
  2023年   180篇
  2022年   342篇
  2021年   581篇
  2020年   447篇
  2019年   536篇
  2018年   529篇
  2017年   414篇
  2016年   518篇
  2015年   739篇
  2014年   948篇
  2013年   957篇
  2012年   1148篇
  2011年   1043篇
  2010年   657篇
  2009年   610篇
  2008年   698篇
  2007年   598篇
  2006年   601篇
  2005年   437篇
  2004年   381篇
  2003年   326篇
  2002年   249篇
  2001年   133篇
  2000年   126篇
  1999年   95篇
  1998年   106篇
  1997年   70篇
  1996年   68篇
  1995年   58篇
  1994年   58篇
  1993年   40篇
  1992年   62篇
  1991年   46篇
  1990年   57篇
  1989年   46篇
  1988年   36篇
  1987年   30篇
  1986年   29篇
  1985年   33篇
  1984年   46篇
  1983年   30篇
  1982年   34篇
  1981年   42篇
  1980年   24篇
  1979年   24篇
  1978年   20篇
  1977年   23篇
  1975年   23篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
161.
162.
163.
164.
Slit molecules comprise one of the four canonical families of axon guidance cues that steer the growth cone in the developing nervous system. Apart from their role in axon pathfinding, emerging lines of evidence suggest that a wide range of cellular processes are regulated by Slit, ranging from branch formation and fasciculation during neurite outgrowth to tumor progression and to angiogenesis. However, the molecular and cellular mechanisms downstream of Slit remain largely unknown, in part, because of a lack of a readily manipulatable system that produces easily identifiable traits in response to Slit. The present study demonstrates the feasibility of using the cell line CAD as an assay system to dissect the signaling pathways triggered by Slit. Here, we show that CAD cells express receptors for Slit (Robo1 and Robo2) and that CAD cells respond to nanomolar concentrations of Slit2 by markedly decelerating the rate of process extension. Using this system, we reveal that Slit2 inactivates GSK3β and that inhibition of GSK3β is required for Slit2 to inhibit process outgrowth. Furthermore, we show that Slit2 induces GSK3β phosphorylation and inhibits neurite outgrowth in adult dorsal root ganglion neurons, validating Slit2 signaling in primary neurons. Given that CAD cells can be conveniently manipulated using standard molecular biological methods and that the process extension phenotype regulated by Slit2 can be readily traced and quantified, the use of a cell line CAD will facilitate the identification of downstream effectors and elucidation of signaling cascade triggered by Slit.  相似文献   
165.
The climate (especially temperature) often plays an important role in the structure, function as well as composition of soil organisms in different latitudes and altitudes. As one of the essential components of soil ecosystem, soil faunal community not only lays their roles as soil engineer in material cycling and energy flow, but also acts as the sensitive bio-indicator to environmental change. However, little information has been available on the responses of soil faunal community to the changed environment at different altitudes and seasons. In order to understand the seasonal dynamics of soil faunal diversity under different forests with varying altitudes, three fir (Abies faxoniana) forests were selected covering a 600 m vertical transition zone. The primary fir forest at 3600 m (A1) of altitude, mixed fir and birch forest at 3300 m (A2) of altitude, and secondary fir forest at 3000 m (A3) of altitude are representative forests in the subalpine and alpine region of west Sichuan. A 2 years study was conducted in the three subalpine and alpine forests from May in 2009 until October in 2010. Soil samples were collected in both the soil organic layer and mineral soil layer. Soil macro-fauna were picked up by hand in the fields. Meso/micro-fauna and damp living fauna were separated and collected from the soil samples by Baermann and Tullgren methods in laboratory, respectively. A total of 74,827 individuals were collected in the 2 years, belonging to seven phyla, 16 classes, 31 orders and 125 families by preliminary identification. Similar dominant groups were detected in different forests at different altitudes, consisting of Spirostreptida, Formicidae, Staphylinidae, Hesperinidae, Onychiuridae, Isotomidae, Oribatuloidae, Alicoragiidae, Secernentea, and Adenophorea. In contrast, the ordinary species of macro-fauna and the ratios of Acarina to Collembolan were obviously different. For instance, the ordinary species were dominated by Cydmaenidae and Mycetophilidae at the A1, Scaphidiidae and Helicinidae at the A2, and Lumbricida and Agelenidae at the A3, respectively. Both the individual density and the number of soil faunal groups were significantly higher in soil organic layer than those in mineral soil layer. The density and group of macro-, meso- and micro-fauna in different forests showed the order as A2 > A1 > A3, but the density of damp living fauna showed the order as A1 > A2 > A3. The functional groups of macro-fauna were mainly dominated by saprozoic. The highest density and group of macro-fauna was observed in August, while the highest value of meso/micro-fauna was detected in October. In addition, the Jacard similarity indices showed that the composition and structure of soil fauna were similar in the different forests varied with altitudes, but the Shannon–Wiener indices were significantly different. The highest values of Shannon–Wiener indices were observed in October at both the A1 and A3, and in August at the A2. The results suggested that soil faunal community kept a high diversity in the subalpine and alpine forests of west Sichuan, and their structures were significantly affected by the variation of altitudes, which provided important scientific evidences for understanding the ecological processes in the subalpine and alpine coniferous forests.  相似文献   
166.
The reactivity of the β93 sulfhydryl (SH) group of human oxyhemoglobins with the negatively charged 5,5′-dithiobis(2,2′-nitrobenzoate) and the uncharged 2,2′-dithiodipyridine was determined as a function of pH. Selected mutant hemoglobins having increased oxygen affinity and having residue substitutions altering charge near the SH group (Wood, Malmö, Yakima, Kempsey, Andrew-Minneapolis, Osler, and Chesapeake) were compared to hemoglobin (Hb) A. Although both reagents reacted with GSH at the same rate and with the same enthalpies of activation, the rates with Hb were different and the difference showed a pronounced pH dependence. The charged reagent was sensitive to charges near the SH group; a positive charge increased the rate and a negative one decreased the rate. The uncharged reagent which reacted with Hb A with activation enthalpies similar to those for GSH was insensitive to neighboring charges, but was sensitive to tertiary and quaternary structural changes. The rates obtained with the latter reagent did not correlate with oxygen affinity. The evolutionary aspects of the β93 cysteine in relation to structure and function are reviewed.  相似文献   
167.
Human‐induced alterations in the birth and mortality rates of species and in the strength of interactions within and between species can lead to changes in the structure and resilience of ecological communities. Recent research points to the importance of considering the distribution of body sizes of species when exploring the response of communities to such perturbations. Here, we present a new size‐based approach for assessing the sensitivity and elasticity of community structure (species equilibrium abundances) and resilience (rate of return to equilibrium) to changes in the intrinsic growth rate of species and in the strengths of species interactions. We apply this approach on two natural systems, the pelagic communities of the Baltic Sea and Lake Vättern, to illustrate how it can be used to identify potential keystone species and keystone links. We find that the keystone status of a species is closely linked to its body size. The analysis also suggests that communities are structurally and dynamically more sensitive to changes in the effects of prey on their consumers than in the effects of consumers on their prey. Moreover, we discuss how community sensitivity analysis can be used to study and compare the fragility of communities with different body size distributions by measuring the mean sensitivity or elasticity over all species or all interaction links in a community. We believe that the community sensitivity analysis developed here holds some promise for identifying species and links that are critical for the structural and dynamic robustness of ecological communities.  相似文献   
168.
Electronegative LDL, a charge-modified LDL (cm-LDL) subfraction that is more negatively charged than normal LDL, has been shown to be inflammatory. We previously showed that pravastatin and simvastatin reduced the electronegative LDL subfraction, fast-migrating LDL (fLDL), as analyzed by capillary isotachophoresis (cITP). The present study examined the effects of rosuvastatin on the more electronegative LDL subfraction, very-fast-migrating LDL (vfLDL), and small, dense charge-modified LDL (sd-cm-LDL) subfractions. Patients with hypercholesterolemia or those who were being treated with statins (n = 81) were treated with or switched to 2.5 mg/d rosuvastatin for 3 months. Rosuvastatin treatment effectively reduced cITP cm-LDL subfractions of LDL (vfLDL and fLDL) or sdLDL (sd-vfLDL and sd-fLDL), which were closely related to each other but were different from the normal subfraction of LDL [slow-migrating LDL (sLDL)] or sdLDL (sd-sLDL) in their relation to the levels of remnant-like particle cholesterol (RLP-C), apolipoprotein (apo) C-II, and apoE. The percent changes in cm-LDL or sd-cm-LDL caused by rosuvastatin were correlated with those in the particle concentrations of LDL or sdLDL measured as LDL-apoB or sdLDL-apoB and the levels of HDL-C, RLP-C, apoC-II, and apoE. In conclusion, rosuvastatin effectively reduced both the vfLDL subfraction and sd-cm-LDL subfractions as analyzed by cITP.  相似文献   
169.
In Fusarium graminearum, a trichothecene biosynthetic complex known as the toxisome forms ovoid and spherical structures in the remodelled endoplasmic reticulum (ER) under mycotoxin-inducing conditions. Previous studies also demonstrated that disruption of actin and tubulin results in a significant decrease in deoxynivalenol (DON) biosynthesis in F. graminearum. However, the functional association between the toxisome and microtubule components has not been clearly defined. In this study we tested the hypothesis that the microtubule network provides key support for toxisome assembly and thus facilitates DON biosynthesis. Through fluorescent live cell imaging, knockout mutant generation, and protein–protein interaction assays, we determined that two of the four F. graminearum tubulins, α1 and β2 tubulins, are indispensable for DON production. We also showed that these two tubulins are directly associated. When the α1–β2 tubulin heterodimer is disrupted, the metabolic activity of the toxisome is significantly suppressed, which leads to significant DON biosynthesis impairment. Similar phenotypic outcomes were shown when F. graminearum wild type was treated with carbendazim, a fungicide that binds to microtubules and disrupts spindle formation. Based on our results, we propose a model where α1–β2 tubulin heterodimer serves as the scaffold for functional toxisome assembly in F. graminearum.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号