首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104770篇
  免费   1706篇
  国内免费   916篇
  2023年   39篇
  2022年   74篇
  2021年   149篇
  2020年   129篇
  2019年   164篇
  2018年   12025篇
  2017年   10842篇
  2016年   7725篇
  2015年   940篇
  2014年   697篇
  2013年   748篇
  2012年   4763篇
  2011年   13337篇
  2010年   12343篇
  2009年   8586篇
  2008年   10228篇
  2007年   11791篇
  2006年   621篇
  2005年   844篇
  2004年   1293篇
  2003年   1314篇
  2002年   1053篇
  2001年   1394篇
  2000年   1138篇
  1999年   728篇
  1998年   223篇
  1997年   246篇
  1996年   179篇
  1995年   148篇
  1994年   159篇
  1993年   135篇
  1992年   385篇
  1991年   362篇
  1990年   290篇
  1989年   228篇
  1988年   218篇
  1987年   153篇
  1986年   149篇
  1985年   113篇
  1984年   72篇
  1983年   81篇
  1982年   32篇
  1979年   39篇
  1976年   37篇
  1975年   42篇
  1973年   40篇
  1972年   297篇
  1971年   320篇
  1970年   39篇
  1962年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Q Ruan  K Ruan  C Balny  M Glaser  W W Mantulin 《Biochemistry》2001,40(48):14706-14714
Adenylate kinase (AKe) from E. coli is a small, single-chain, monomeric enzyme with no tryptophan and a single cysteine residue. We have constructed six single-Trp mutants of AKe to facilitate optical studies of these proteins and to specifically examine the interrelationship between their structure, function, dynamics, and folding reactions. In this study, the effects of hydrostatic pressure on the folding reactions of AKe were studied. The native structure of AKe was transformed to a non-native, yet pressure stable, conformation by hydrostatic pressure of about 300 MPa. This pressure lability of AKe is rather low for a monomeric protein and presumably may be attributed to substantial conformational flexibility and a correspondingly large volume change. The refolding of AKe after pressure-induced denaturation was reversible under ambient conditions. At low temperature (near 0 degrees C), the refolding process of pressure-exposed AKe mutants displayed a significant hysteresis. The observation of a slow refolding rate in the 193 region and a faster folding rate around the active site (86, 41, 73 regions) leads us to suggest that in the folding process, priority is afforded to functional regions. The slow structural return of the 193 region apparently does not hinder the more rapid return of enzymatic activity of AKe. Circular dichroism studies on the pressure-denatured Y193W mutant show that the secondary structure (calculated from far-UV spectra) returned at a rapid rate, but the tertiary structure alignment (calculated from near-UV spectra) around the 193 region occurred more slowly at rates comparable to those detected by fluorescence intensity. Denaturation of AKe mutants by guanidine hydrochloride and subsequent refolding experiments were also consistent with a much slower refolding process around the 193 region than near the active site. Fast refolding kinetic traces were observed in F86W, S41W, and A73W mutants using a fluorescence detection stopped-flow rapid mixing device, while only a slow kinetic trace was observed for Y193W. The results suggest that the differences in regional folding rates of AKe are not derived from the specific denaturation methods, but rather are inherent in the structural organization of the protein.  相似文献   
92.
93.
94.

Background  

We have previously shown that supernatant from Candida albicans (CA) culture contains a Secretory Interleukin (IL)-12 Inhibitory Factor (CA-SIIF), which inhibits IL-12 production by human monocytes. However, the effect of CA-SIIF on secretion of other cytokines by monocytes is unknown, and detailed characterization of this factor has not been performed.  相似文献   
95.
'15N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the '15N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the '15N signatures of peat layers. At two sites 15N-enriched peat '15N signatures of up to +17‰ were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat '15N. Less 15N enriched '15N signatures (e.g. -1.9‰ to +3.9‰) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that 15N signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.  相似文献   
96.
97.

Background  

With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows.  相似文献   
98.
Identification of genetic markers involved in stress response to physical factors or chemical substances in organisms is a challenging task. Typing of upregulated gene expression due to selective antibacterial pressure is a promising approach in the search of molecular mechanisms responsible for development of resistance. cDNA-Fluorescent Amplified Fragment Length Polymorphism (cDNA-FAFLP) strategy was developed and applied in the search of antimycotic drug resistance marker(s) in medically important fungi as an alternative method to microarray analysis. We compared differential gene expression of two sensitive Candida albicans reference strains (ATCC 10231 and ATCC 60133) and two of their paired resistant to fluconazole and itraconazole mutants. Resistant mutants Candida albicans FLC-R, resistant to fluconazole (MIC > 128 μg/ml) and Candida albicans ICZ-R, resistant to itraconazole (MIC > 4 μg/ml) were obtained in subcultures with gradual increase of the antifungal in the culture medium. cDNA-AFLP profile in both itraconazole resistant mutants showed specific spectrophotometric peaks with 5–6-fold RNA overexpression product of 500 bp length compared to the sensitive strains. Fluconazole mutants do not reveal RNA level changes under tested by us typing conditions. These results indicate that the cDNA-FAFLP strategy is a relatively rapid, simple, and reliable method for simultaneous typing of both constitutive and induced differences in expression of host genes providing insight into the biological processes involved in response to drugs in bacteria and fungi. Moreover, this methodology could be tested for typing of the genome response of any organism to physical or chemical stress factors.  相似文献   
99.
Potential interactions between climate change and exotic plant invasions may affect areas of high conservation value, such as land set aside for the protection of endangered species or ecological communities. We investigated this issue in eastern Australia using species distribution models for five exotic vines under climate regimes for 2020 and 2050. We examined how projected changes in the distribution of climatically suitable habitat may coincide with the remaining remnants of an endangered ecological community—littoral rainforests—in this region. The number of known infestations of each weed in tropical, subtropical and temperate areas was used to assess the likelihood of further expansion into areas projected to provide suitable habitat under future conditions. Littoral rainforest reserves were consistently predicted to provide bioclimatically suitable habitat for the five vines examined under both current and future climate scenarios. We explore the consequences and potential strategies for managing exotic plant invasions in these protected areas in the coming decades.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号