首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   6篇
  2023年   1篇
  2021年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   12篇
  2010年   5篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   9篇
  2004年   5篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有125条查询结果,搜索用时 453 毫秒
1.
A recombinant DNA, encoding the chimeric protein of the signal sequence for bifidobacterial α-amylase mature pediocin PA-1, was introduced into Bifidobacterium longum MG1. Biologically active pediocin PA-1 was successfully secreted from the strain and showed bactericidal activity against Listeria monocytogenes and the same molecular mass as native pediocin PA-1.  相似文献   
2.
We describe the solubilization, resolution, and reconstitution of the formylmethionylleucylphenylalanine (fMet-Leu-Phe) receptor and guanine nucleotide regulatory proteins (G-proteins). The receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Guanine nucleotides decreased the number of high-affinity binding sites and accelerated the rate of dissociation of the receptor-ligand complex, suggesting that the solubilized receptor remained coupled to endogenous G-proteins. The solubilized receptor was resolved from endogenous G-proteins by fractionation on a wheat germ agglutinin (WGA)-Sepharose 4B column. High-affinity [3H]fMet-Leu-Phe binding to the WGA-purified receptor was diminished and exhibited reduced guanine nucleotide sensitivity. High-affinity [3H]fMet-Leu-Phe binding and guanine nucleotide sensitivity were reconstituted upon the addition of purified brain G-proteins. Similar results were obtained when the receptor was reconstituted with brain G-proteins into phospholipid vesicles by gel filtration chromatography. In addition, we also demonstrated fMet-Leu-Phe-dependent GTP hydrolysis in the reconstituted vesicles. The results of this work indicate that coupling of the fMet-Leu-Phe receptor to G-proteins converts the receptor to a high-affinity binding state and that agonist produces activation of G-proteins. The resolution and functional reconstitution of this receptor should provide an important step toward the elucidation of the molecular mechanism of the fMet-Leu-Phe transduction system in neutrophils.  相似文献   
3.
We previously demonstrated that the phytosphingosine-induced apoptosis was accompanied by the concomitant induction of both the caspase-8-mediated and mitochondrial activation-mediated apoptosis pathways. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in the activation of these two distinct cell death pathways induced by phytosphingosine in human cancer cells. Phytosphingosine caused strong induction of caspase-8 activity and caspase-independent Bax translocation to the mitochondria. A rapid decrease of phosphorylated ERK1/2 and a marked increase of p38 MAPK phosphorylation were observed within 10 min after phytosphingosine treatment. Activation of ERK1/2 by pretreatment with phorbol 12-myristate 13-acetate or forced expression of ERK1/2 attenuated phytosphingosine-induced caspase-8 activation. However, Bax translocation and caspase-9 activation was unaffected, indicating that down-regulation of the ERK activity is specifically required for the phytosphingosine-induced caspase-8-dependent cell death pathway. On the other hand, treatment with SB203580, a p38 MAPK-specific inhibitor, or expression of a dominant negative form of p38 MAPK suppressed phytosphingosine-induced translocation of the proapoptotic protein, Bax, from the cytosol to mitochondria, cytochrome c release, and subsequent caspase-9 activation but did not affect caspase-8 activation, indicating that activation of p38 MAPK is involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that phytosphingosine can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, enhancing the understanding of the molecular mechanisms utilized by naturally occurring metabolites to regulate cell death. Molecular dissection of the signaling pathways that activate the apoptotic cell death machinery is critical for both our understanding of cell death events and development of cancer therapeutic agents.  相似文献   
4.
Mitogen-activated protein kinase (MAPK) cascade(s) is important for plant defense/stress responses. Though MAPKs have been identified and characterized in rice (Oryza sativa L.), a monocot cereal crop research model, the first upstream component of the kinase cascade, namely MAPK kinase kinase (MAPKKK) has not yet been identified. Here we report the cloning of a novel rice gene encoding a MAPKKK, OsEDR1, designated based on its homology with the Arabidopsis MAPKKK, AtEDR1. OsEDR1, a single copy gene in the genome of rice, encodes a predicted protein with molecular mass of 113046.13 and a pI of 9.03. Using our established two-week-old rice seedling in vitro model system, we show that OsEDR1 has a constitutive expression in seedling leaves and is further up-regulated within 15 min upon wounding by cut, treatment with the global signals jasmonic acid (JA), salicylic acid (SA), ethylene (ethephon, ET), abscisic acid, and hydrogen peroxide. In addition, protein phosphatase inhibitors, fungal elicitor chitosan, drought, high salt and sugar, and heavy metals also dramatically induce its expression. Moreover, OsEDR1 expression was altered by co-application of JA, SA, and ET, and required de novo synthesized protein factor(s) in its transient regulation. Furthermore, using an in vivo system we also show that OsEDR1 responds to changes in temperature and environmental pollutants-ozone and sulfur dioxide. Finally, OsEDR1 expression varied significantly in vegetative and reproductive tissues. These results suggest a role for OsEDR1 in defense/stress signalling pathways and development.  相似文献   
5.
Endostatin, a fragment of collagen XVIII, is a potent anti-angiogenic protein, but the molecular mechanism of its action is not yet clear. We examined the effects of endostatin on the biological and biochemical activities of vascular endothelial growth factor (VEGF). Endostatin blocked VEGF-induced tyrosine phosphorylation of KDR/Flk-1 and activation of ERK, p38 MAPK, and p125(FAK) in human umbilical vein endothelial cells. Endostatin also inhibited the binding of VEGF(165) to both endothelial cells and purified extracellular domain of KDR/Flk-1. Moreover, the binding of VEGF(121) to KDR/Flk-1 and VEGF(121)-stimulated ERK activation were blocked by endostatin. The direct interaction between endostatin and KDR/Flk-1 was confirmed by affinity chromatography. However, endostatin did not bind to VEGF. Our findings suggest that a direct interaction of endostatin with KDR/Flk-1 may be involved in the inhibitory function of endostatin toward VEGF actions and responsible for its potent anti-angiogenic and anti-tumor activities in vivo.  相似文献   
6.
A UDP-glucose pyrophosphorylase (UGPase) gene from Acetobacter xylinum BRC5 has been cloned, sequenced, and expressed in Escherichia coli. The gene consists of 867 nucleotides and encodes a polypeptide of 289 amino acid residues with a calculated molecular mass of 31,493 Da. The amino acid sequences of the enzyme showed an 85.8% identity to those of an enzyme from A. xilinum ATCC 23768. A polyhistidine-UGPase fusion enzyme was expressed and purified from the transformed E. coli. The enzyme showed a 35,620-Da single protein band on SDS/PAGE and an about 160,000-Da protein band on 8-16% pore-gradient polyacrylamide gel, indicating the enzyme may be a tetramer or pentamer composed of four or five identical subunits. Kinetic analysis of the enzyme showed a typical Michaelis-Menten substrate saturation pattern, from which Km and Vmax were calculated to be 3.22 mM and 175.4 micromol x min(-1) x mg(-1) for UDP-glucose and 0.24 mM and 69.4 micromol x min(-1) x mg(-1) for PPi, respectively, required Mg2+ for maximal activity, and was inhibited by free pyrophosphate. Computer-aided comparison of the Acetobacter enzyme sequence with those of other bacterial enzymes found significant similarities among them and predicted that Lys84 is a catalytically important residue. Lys84 in the enzyme, which was also conserved in other bacterial enzyme sequences, was replaced by arginine or leucine. The K84R mutant enzyme was successfully expressed in E. coli and showed enzyme activity (63% of the wild-type enzyme activity), but K84L was not isolated in stable form. These results suggest that Lys84 is significant in not only catalysis but also maintenance of the active structure.  相似文献   
7.
The 2alpha-functionalized 1beta-methylcarbapenems 3 were synthesized from the 2-formyl 1beta-methylcarbapenem intermediate 5. The best compound in the series of 2alpha-(hydroxy)alkylcarbapenems, KR-21012, displayed well balanced in vitro and in vivo activity as a parent compound of oral carbapenem.  相似文献   
8.
Atopic dermatitis (AD) is a chronic inflammatory disease of the skin that is often associated with other atopic diseases, such as asthma and allergic rhinitis. Although topical steroids have widely been prescribed for patients with AD, skin abnormalities are frequently observed after prolonged steroid treatment. In this study, a novel water-soluble organogermanium compound (Ge-Vit) was prepared because organogermanium is a known INF-γ inducer. The Ge-Vit treatment decreased the basal TEWL and IgE production and attenuated the disruption of the skin barrier function in a murine model of chronic contact dermatitis. The histological examination further supported the anti-AD activities. These results suggested that Ge-Vit can be a useful drug candidate for treating atopic dermatitis.  相似文献   
9.
We determined the complete nucleotide sequence of the mitochondrial genome for the rabbitfish Siganus fuscescens (Perciformes, Siganidae). This mitochondrial genome, consisting of 16,491 base pairs (bp), included 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a noncoding control region similar those found in other vertebrates; the gene order was identical to that of typical vertebrates. Most of the genes of S. fuscescens were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser [UCN], Glu, and Pro) genes were encoded on the L-strand. The reading frames of ATPase 8 and 6 and those of ND4L and ND4 overlapped by ten and seven nucleotides, respectively. All mitochondrial protein-coding genes began with an ATG start codon, except for CO1, which started with GTG. Open reading frames of S. fuscescens ended with TAA (ND1, CO1, ATPase 8, ND4L, ND5 and ND6), and the remainder had incomplete stop codons, either TA (ATPase 6 and CO3) or T (ND2, CO2, ND3, ND4, and Cytb). The origin of L-strand replication in S. fuscescens was located in a cluster of five tRNA genes (WANCY) and was 34 nucleotides in length. A major noncoding region between the tRNA-Pro and tRNA-Phe genes (828 bp) was considered to be the control region (D-loop). Within this sequence, we identified a conserved sequence block characteristic of this region. The rabbitfish was grouped with Siganus canaliculatus in most parsimony analyses, which showed 100% bootstrap support for their divergence. These findings are useful for inferring phylogenetic relationships and identification within the suborder Acanthuroidei.  相似文献   
10.
Hepatocyte growth factor (HGF) and c-Met have recently attracted a great deal of attention as prognostic indicators of patient outcome, and they are important in the control of tumor growth and invasion. Epigallocatechin-3-gallate (EGCG) has been shown to modulate multiple signal pathways in a manner that controls the unwanted proliferation and invasion of cells, thereby imparting cancer chemopreventive and therapeutic effects. In this study, we investigated the effects of EGCG in inhibiting HGF-induced tumor growth and invasion of oral cancer in vitro and in vivo. We examined the effects of EGCG on HGF-induced cell proliferation, migration, invasion, induction of apoptosis and modulation of HGF/c-Met signaling pathway in the KB oral cancer cell line. We investigated the antitumor effect and inhibition of c-Met expression by EGCG in a syngeneic mouse model (C3H/HeJ mice, SCC VII/SF cell line). HGF promoted cell proliferation, migration, invasion and induction of MMP (matrix metalloproteinase)-2 and MMP-9 in KB cells. EGCG significantly inhibited HGF-induced phosphorylation of Met and cell growth, invasion and expression of MMP-2 and MMP-9. EGCG blocked HGF-induced phosphorylation of c-Met and that of the downstream kinases AKT and ERK, and inhibition of p-AKT and p-ERK by EGCG was associated with marked increases in the phosphorylation of p38, JNK, cleaved caspase-3 and poly-ADP-ribose polymerase. In C3H/HeJ syngeneic mice, as an in vivo model, tumor growth was suppressed and apoptosis was increased by EGCG. Our results suggest that EGCG may be a potential therapeutic agent to inhibit HGF-induced tumor growth and invasion in oral cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号