首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   131篇
  612篇
  2023年   4篇
  2022年   13篇
  2021年   22篇
  2020年   13篇
  2019年   12篇
  2018年   12篇
  2017年   11篇
  2016年   18篇
  2015年   21篇
  2014年   29篇
  2013年   28篇
  2012年   41篇
  2011年   29篇
  2010年   23篇
  2009年   25篇
  2008年   34篇
  2007年   55篇
  2006年   124篇
  2005年   30篇
  2004年   12篇
  2003年   16篇
  2002年   11篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1964年   1篇
排序方式: 共有612条查询结果,搜索用时 9 毫秒
121.
Wild primates encounter complex matrices of substrates that differ in size, orientation, height, and compliance, and often move on multiple, discontinuous substrates within a single bout of locomotion. Our current understanding of primate gait is limited by artificial laboratory settings in which primate quadrupedal gait has primarily been studied. This study analyzes wild Saimiri sciureus (common squirrel monkey) gait on discontinuous substrates to capture the realistic effects of the complex arboreal habitat on walking kinematics. We collected high‐speed video footage at Tiputini Biodiversity Station, Ecuador between August and October 2017. Overall, the squirrel monkeys used more asymmetrical walking gaits than symmetrical gaits, and specifically asymmetrical lateral sequence walking gaits when moving across discontinuous substrates. When individuals used symmetrical gaits, they used diagonal sequence gaits more than lateral sequence gaits. In addition, individuals were more likely to change their footfall sequence during strides on discontinuous substrates. Squirrel monkeys increased the time lag between touchdowns both of ipsilaterally paired limbs (pair lag) and of the paired forelimbs (forelimb lag) when walking across discontinuous substrates compared to continuous substrates. Results indicate that gait flexibility and the ability to alter footfall patterns during quadrupedal walking may be critical for primates to safely move in their complex arboreal habitats. Notably, wild squirrel monkey quadrupedalism is diverse and flexible with high proportions of asymmetrical walking. Studying kinematics in the wild is critical for understanding the complexity of primate quadrupedalism.  相似文献   
122.
The long term goal of this work is to understand synaptogenesis in homologous regions of the cerebral cortex, i.e. a whisker barrel. Hemispheres of aldehyde perfused mice, at various ages from P6 to P65 (DOB = P0; three each), were osmicated and sectioned at 40mm parallel to the pia. Barrels were identified, mapped and measured in sections through mid-level layer IV, and then embedded for electron microscopy. The main findings were: (1) Cell bodies and large diameter dendrites thin out in barrel hollows from P6 to P8. (2) Degeneration occurs primarily from P6 to P11, peaking on P8. (3) Single synapses from narrow, tubular axons predominate before P14; afterwards, multiple synapses from bag-like terminals increase in number. (4) The number of spines increases dramatically between P9 and P12. (5) Asymmetrical and symmetrical synapses occur at all ages studied; their junction lengths are not significantly different at any age. (6) Asymmetrical synapse density increases rapidly from P6 to P8, slowly from P9 to P 12, sharply between P13 and P14 along with patterned whisking, slowly to P20 and drops in adults. (7) Synapses onto spiny and non-spiny stellate cell bodies increase markedly from P10 to P20. (8) Changes in density of asymmetrical synapses in neuropil and of symmetrical synapses on spiny stellate cell bodies follow similar sequences but the sequence in neuropil is 72 h earlier. (9) When barrel size is taken into account, synaptogenesis is monotonic, increasing sharply in the second postnatal week followed by a slower increase into adulthood.  相似文献   
123.
Mesenchymal stem cells (MSCs) are one of the most attractive cell types for cell-based bone tissue repair applications. Fetal-derived MSCs and maternal-derived MSCs have been isolated from chorionic villi of human term placenta and the decidua basalis attached to the placenta following delivery, respectively. Chorionic-derived MSCs (CMSCs) and decidua-derived MSCs (DMSCs) generated in this study met the MSCs criteria set by International Society of Cellular Therapy. These criteria include: (i) adherence to plastic; (ii) >90% expression of CD73, CD105, CD90, CD146, CD44 and CD166 combined with <5% expression of CD45, CD19 and HLA-DR; and (iii) ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages. In vivo subcutaneous implantation into SCID mice showed that both bromo-deoxyuridine (BrdU)-labelled CMSCs and DMSCs when implanted together with hydroxyapatite/tricalcium phosphate particles were capable of forming ectopic bone at 8-weeks post-transplantation. Histological assessment showed expression of bone markers, osteopontin (OPN), osteocalcin (OCN), biglycan (BGN), bone sialoprotein (BSP), and also a marker of vasculature, alpha-smooth muscle actin (α-SMA). This study provides evidence to support CMSCs and DMSCs as cellular candidates with potent bone forming capacity.  相似文献   
124.
Ryk pseudokinase receptors act as important transducers of Wnt signals, particularly in the nervous system. Little is known, however, of their interactions at the cell surface. Here, we show that a Drosophila Ryk family member, DERAILED (DRL), forms cell surface homodimers and can also heterodimerize with the two other fly Ryks, DERAILED-2 and DOUGHNUT ON 2. DERAILED homodimerization levels increase significantly in the presence of its ligand, WNT5. In addition, DERAILED displays ligand-independent dimerization mediated by a motif in its transmembrane domain. Increased dimerization of DRL upon WNT5 binding or upon the replacement of DERAILED''s extracellular domain with the immunoglobulin Fc domain results in an increased recruitment of the Src family kinase SRC64B, a previously identified downstream pathway effector. Formation of the SRC64B/DERAILED complex requires SRC64B''s SH2 domain and DERAILED''s PDZ-binding motif. Mutations in DERAILED''s inactive tyrosine kinase-homologous domain also disrupt the formation of DERAILED/SRC64B complexes, indicating that its conformation is likely important in facilitating its interaction with SRC64B. Finally, we show that DERAILED''s function during embryonic axon guidance requires its Wnt-binding domain, a putative juxtamembrane extracellular tetrabasic cleavage site, and the PDZ-binding domain, indicating that DERAILED''s activation involves a complex set of events including both dimerization and proteolytic processing.  相似文献   
125.
Liza Douiev  Ann Saada 《BBA》2018,1859(9):893-900
Mitochondrial cytochrome c oxidase (COX, respiratory chain complex IV), contributes to ATP production via oxidative phosphorylation (OXPHOS). Clinical presentation of COX deficiency is heterogeneous ranging from mild to severe neuromuscular diseases. Anemia is among the symptoms and we have previously reported Fanconi anemia like features in COX4-1 deficiency, suggesting genomic instability and our preliminary results detected nuclear double stranded DNA breaks (DSB). We now quantified the DSB by phospho histone H2AX Ser139 staining of COX4-1 and COX6B1 deficient fibroblasts (225% and 215% of normal, respectively) and confirmed their occurrence by neutral comet assay. We further explored the mechanism of DNA damage by studying normal fibroblasts treated with micromolar concentrations of cyanide (KCN). Present results demonstrate elevated nuclear DSB in cells treated with 50?μM KCN for 24?h (170% of normal) in high-glucose medium conditions where ROS and ATP remain normal, although Glutathione content was partially decreased. In glucose-free and serum-free medium, where growth is hampered, DSB were not elevated. Additionally we demonstrate the benefit of nicotinamide riboside (NR) which ameliorated DSB in COX4-1, COX6B1 and KCN treated cells (130%, 154% and 87% of normal cells, respectively). Conversely a negative effect of a poly[ADP-ribose] polymerase (PARP) inhibitor was found. Although additional investigation is needed, our findings raise the possibility that the pathomechanism of COX deficiency and possibly also in other OXPHOS defects, include nuclear DNA damage resulting from nicotinamide adenine dinucleotide (NAD+) deficit combined with a replicative state, rather than oxidative stress and energy depletion.  相似文献   
126.
Interactions among neighbors influence the structure of communities of sessile organisms. Closely related species tend to share habitat and resource requirements and to interact with the same mutualists and natural enemies so that the strength of interspecific interactions tends to decrease with evolutionary divergence time. Nevertheless, the degree to which such phylogenetically related ecological interactions structure plant communities remains unclear. Using data from five large mapped forest plots combined with a DNA barcode mega‐phylogeny, we employed an individual‐based approach to assess the collective effects of focal tree size on neighborhood phylogenetic relatedness. Abundance‐weighted average divergence time for all neighbors (ADT_all) and for heterospecific neighbors only (ADT_hetero) were calculated for each individual of canopy tree species. Within local neighborhoods, we found phylogenetic composition changed with focal tree size. Specifically, significant increases in ADT_all with focal tree size were evident at all sites. In contrast, there was no significant change in ADT_hetero with tree size in four of the five sites for both sapling‐sized and all neighbors, even at the smallest neighbourhood scale (0–5 m), suggesting a limited role for phylogeny‐dependent interactions. However, there were inverse relationships between focal tree size and the proportion of heterospecific neighbors belonging to closely related species at some sites, providing evidence for negative phylogenetic density dependence. Overall, our results indicate that negative interaction with conspecifics had a much greater impact on neighborhood assemblages than interactions among closely related species and could contribute to community structure and diversity maintenance in different forest communities.  相似文献   
127.
Many animals show unique morphological and behavioural adaptations to specific habitats. In particular, variation in cranial morphology is known to influence feeding performance, which in turn influences dietary habits and, ultimately, fitness. Dietary separation is an important means of partitioning ecological niches and avoiding inter‐ and intraspecific competition. Consequently, differences in dietary resources may help explain phenotypic divergence in closely‐related species occupying different habitats, as well as sexual dimorphism. We test this hypothesis on five phenotypic forms of a recent radiation of dwarf chameleons (Bradypodion) that vary extensively in habitat use and cranial morphology. By examining stomach contents, the dietary composition of each phenotypic form is compared to investigate potential differences in feeding strategies. Overall, chameleons in the present study exhibit considerable dietary overlap (at both inter‐ and intraspecific levels), indicating that diet is not a major driver of variation in cranial morphology within this radiation. However, the stomachs of closed‐canopy females were found to contain more prey items than male stomachs, possibly indicating that females require a greater caloric intake than their male counterparts.  相似文献   
128.
Single-stranded DNA-binding proteins (SSBs) are highly important in DNA metabolism and play an essential role in all major DNA repair pathways. SSBs are generally characterised by the presence of an oligonucleotide binding (OB) fold which is able to recognise single-stranded DNA (ssDNA) with high affinity. We discovered two news SSBs in humans (hSSB1 and hSSB2) that both contain a single OB domain followed by a divergent spacer region and a charged C-terminus. We have extensively characterised one of these, hSSB1 (NABP2/OBFC2B), in numerous important DNA processing events such as, in DNA double-stranded break repair and in the response to oxidative DNA damage. Although the structure of hSSB1 bound to ssDNA has recently been determined using X-ray crystallography, the detailed atomic level mechanism of the interaction of hSSB1 with ssDNA in solution has not been established. In this study we report the solution-state backbone chemical shift assignments of the OB domain of hSSB1. In addition, we have utilized NMR to map the DNA-binding interface of hSSB1, revealing major differences between recognition of ssDNA under physiological conditions and in the recently determined crystal structure. Our NMR data in combination with further biophysical and biochemical experiments will allow us to address these discrepancies and shed light onto the structural basis of DNA-binding by hSSB1 in solution.  相似文献   
129.
Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号