首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   11篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   7篇
  2008年   11篇
  2007年   8篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   10篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
141.
The major form of autosomal dominant polycystic kidney disease (ADPKD) results from mutation of a gene (PKD1) of unknown function that is essential for the later stages of renal tubular differentiation. In this report, we describe a novel cell culture system for studying how PKD1 regulates this process. We show that expression of human PKD1 in MDCK cells slows their growth and protects them from programmed cell death. MDCK cells expressing PKD1 also spontaneously form branching tubules while control cells form simple cysts. Increased cell proliferation and apoptosis have been implicated in the pathogenesis of cystic diseases. Our study suggests that PKD1 may function to regulate both pathways, allowing cells to enter a differentiation pathway that results in tubule formation.  相似文献   
142.
The present review emphasizes on the use of Polyphenol oxidase (PPO) enzyme in the bioremediation of phenolic contaminants from industrial wastewater. PPO is a group of enzyme that mainly exists in two forms; tyrosinase (E.C. 1.14.18.1) and laccase (E.C. 1.10.3.1) which are widely distributed among microorganisms, plants and animals. These oxidoreductive enzymes remain effective in a wide range of pH and temperature, particularly if they are immobilized on some carrier or matrices, and they can degrade a wide variety of mono and/or diphenolic compounds. However, high production costs inhibit the widespread use of these enzymes for remediation in industrial scale. Nevertheless, bench studies and field studies have shown enzymatic wastewater treatment to be feasible options for biodegradation of phenols through biological route. Nanomaterials-PPO conjugates have been also applied for removal of phenols which has successfully lower down the drawbacks of enzymatic water treatment. Therefore in this article various approaches and current state of use of PPO in the bioremediation of wastewater, as well as the benefits and disadvantages associated with the use of such enzymes have been overviewed.  相似文献   
143.
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is the very first site of interactions with the antimicrobial peptides. In this work, we have determined a solution conformation of melittin, a well-known membrane active amphiphilic peptide from honey bee venom, by transferred nuclear Overhauser effect (Tr-NOE) spectroscopy in its bound state with lipopolysaccharide. The LPS bound conformation of melittin is characterized by a helical structure restricted only to the C-terminus region (residues A15-R24) of the molecule. Saturation transfer difference (STD) NMR studies reveal that several C-terminal residues of melittin including Trp19 are in close proximity with LPS. Isothermal titration calorimetry (ITC) data demonstrates that melittin binding to LPS or lipid A is an endothermic process. The interaction between melittin and lipid A is further characterized by an equilibrium association constant (Ka) of 2.85 × 106 M− 1 and a stoichiometry of 0.80, melittin/lipid A. The estimated free energy of binding (ΔG0), − 8.8 kcal mol− 1, obtained from ITC experiments correlates well with a partial helical structure of melittin in complex with LPS. Moreover, a synthetic peptide fragment, residues L13-Q26 or mel-C, derived from the C-terminus of melittin has been found to contain comparable outer membrane permeabilizing activity against Escherichia coli cells. Intrinsic tryptophan fluorescence experiments of melittin and mel-C demonstrate very similar emission maxima and quenching in presence of LPS micelles. The Red Edge Excitation Shift (REES) studies of tryptophan residue indicate that both peptides are located in very similar environment in complex with LPS. Collectively, these results suggest that a helical conformation of melittin, at its C-terminus, could be an important element in recognition of LPS in the outer membrane.  相似文献   
144.
Resistance of Listeria monocytogenes to reactive oxygen radicals may facilitate its survival in phagocytic cells and against some oxidizing sanitizers. The aim of this study was to investigate the function of the 2-cys peroxiredoxin (Prx) homologue in L. monocytogenes, particularly its survival in a hydrogen peroxide–containing environment. An in-frame prx deletion mutant and a complementation strain were constructed and evaluated for their growth and survival either in media containing different concentrations (0, 15, 20, 25, 50, and 294 mmol · L−1) hydrogen peroxide or in macrophages. Bacterial survival in various mouse organs was also investigated after intraperitoneal administration. We found that prx-defective L. monocytogenes was sensitive to hydrogen peroxide in in vitro growth media but not in mouse organs or in macrophages, suggesting that Prx promotes survival in the presence of exogenous hydrogen peroxide but not in mammalian cells or organs.  相似文献   
145.
Listeriolysin O (LLO) is a pore-forming hemolysin secreted by the foodborne pathogen Listeria monocytogenes and is required for bacterial virulence. Current detection methods for L. monocytogenes are time-consuming, labor-intensive, and expensive, which is impractical considering the limitations of food storage. To overcome these problems, we developed a liposome-doped silica nanocomposite as a simple, inexpensive, and highly stable biosensor material that mimics existing whole-cell assays for LLO. Small unilamellar liposomes containing fluorescent dyes were immobilized within porous silica using alcohol-free sol-gel synthesis methods. The immobilized liposomes served as cellular surrogates for membrane insertion and pore formation by LLO. The integrity of liposomes in the solid-state sol-gel glass was investigated by fluorescence quenching and leaching assays. The materials were stable for at least 5 months in ambient conditions. Both free and immobilized liposomes responded to LLO at pH 6.0 with concentration dependent kinetics. The pore formation of LLO in liposome-doped silica composites displayed similar kinetic curves as free liposomes but with slower rates. LLO insertion into the immobilized liposomes was pH dependent. No increase in membrane permeability was observed at pH 7.4 for the liposome-doped composites in the presence of LLO. Immobilized liposomes can detect LLO in approximately 1.5 h using a steady state calibration and within 30 min using a kinetic calibration. These liposome silica composites potentially could be used for the detection of hemolysin producing L. monocytogenes as well as the many other bacteria that produce pore-forming toxins.  相似文献   
146.
Adhesion is a crucial first step in Listeria monocytogenes pathogenesis. In this study, we examined how the adhesion properties of serotypes correlate with their invasion efficiencies in a cell culture model (Caco-2) and in a mouse model. Adhesion characteristics of all 13 serotypes of L. monocytogenes (25 strains) were analyzed, which yielded three distinct groups (P < 0.05) with high-, medium-, and low-level-adhesion profiles. The efficiency of these strains in invading the Caco-2 cell line was analyzed, which produced two groups; however, the overall correlation (R2) was only 0.1236. In the mouse bioassay, all selected strains, irrespective of their adhesion profiles, translocated to the liver and the spleen with almost equal frequencies that did not show any clear relationship with adhesion profiles. However, the serotypes with increased adhesion showed a slightly increased translocation to the brain (R2 = 0.3371). Collectively, these results indicate that an in vitro adhesion profile might not be an accurate assessment of a strain's ability to invade a cultured cell line or organs or tissues in a mouse model.  相似文献   
147.
The development of rapid methods for detection of viable Listeria monocytogenes is crucial to prevent listeriosis and product recalls. While immunomagnetic separation has been used for isolating Listeria spp., lack of specificity and pathogenicity determination render this method unsatisfactory. A two-step method using Protein A agarose beads (Immunobeads) coated with a more specific antibody, monoclonal antibody (MAb)-C11E9 for L. monocytogenes was developed. Immunobeads were allowed to capture Listeria cells from a variety of samples and tested for cytopathogenic action on a murine hybridoma B-lymphocyte, Ped-2E9 cell line by Trypan blue staining, and by an alkaline phosphatase (AP)-based cytotoxicity assay. The two-step method was used to test uninoculated hotdogs, bologna, and raw beef, chicken, and pork samples, following selective enrichment in half-Fraser broth. Pure culture studies proved the assay to be specific for L. monocytogenes, while a similar assay with Dynal Anti-Listeria immunomagnetic beads was positive for L. monocytogenes, L. ivanovii, and L. seeligeri. Detection and confirmation of cytopathogenicity of Listeria cells from food samples after 24-h selective enrichment were completed in 2-4 h. Isolates were further analyzed by the CAMP test for hemolytic activity and RiboPrinter for genomic patterns. Using immunoseparation and cytotoxicity as a two-step rapid method, viable L. monocytogenes could be isolated, detected, and confirmed as cytopathogenic in 28 h or less.  相似文献   
148.
The globular head domain of talin, a large multi-domain cytoplasmic protein, is required for inside-out activation of the integrins, a family of heterodimeric transmembrane cell adhesion molecules. Talin head contains a FERM domain that is composed of F1, F2, and F3 subdomains. A F0 subdomain is located N-terminus to F1. The F3 contains a canonical phosphotyrosine binding (PTB) fold that directly interacts with the membrane proximal NPxY/F motif in the integrin β cytoplasmic tail. This interaction is stabilized by the F2 that interacts with the lipid head-groups of the plasma membrane. In comparison to F2 and F3, the properties of the F0F1 remains poorly characterized. Here, we showed that F0F1 is essential for talin-induced activation of integrin αLβ2 (LFA-1). F0F1 has a high content of β-sheet secondary structure, and it tends to homodimerize that may provide stability against proteolysis and chaotrope induced unfolding.  相似文献   
149.
Dielectrophoresis (DEP) has been regarded as a useful tool for manipulating biological cells prior to the detection of cells. Since DEP uses high AC electrical fields, it is important to examine whether these electrical fields in any way damage cells or affect their characteristics in subsequent analytical procedures. In this study, we investigated the effects of DEP manipulation on the characteristics of Listeria monocytogenes cells, including the immuno-reactivity to several Listeria-specific antibodies, the cell growth profile in liquid medium, and the cell viability on selective agar plates. It was found that a 1-h DEP treatment increased the cell immuno-reactivity to the commercial Listeria species-specific polyclonal antibodies (from KPL) by ~31.8% and to the C11E9 monoclonal antibodies by ~82.9%, whereas no significant changes were observed with either anti-InlB or anti-ActA antibodies. A 1-h DEP treatment did not cause any change in the growth profile of Listeria in the low conductive growth medium (LCGM); however, prolonged treatments (4 h or greater) caused significant delays in cell growth. The results of plating methods showed that a 4-h DEP treatment (5 MHz, 20 Vpp) reduced the viable cell numbers by 56.8–89.7 %. These results indicated that DEP manipulation may or may not affect the final detection signal in immuno-based detection depending on the type of antigen-antibody reaction involved. However, prolonged DEP treatment for manipulating bacterial cells could produce negative effects on the cell detection by growth-based methods. Careful selection of DEP operation conditions could avoid or minimize negative effects on subsequent cell detection performance.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号