首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   476篇
  免费   21篇
  国内免费   2篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   7篇
  2016年   14篇
  2015年   12篇
  2014年   17篇
  2013年   28篇
  2012年   27篇
  2011年   26篇
  2010年   18篇
  2009年   17篇
  2008年   29篇
  2007年   29篇
  2006年   24篇
  2005年   19篇
  2004年   26篇
  2003年   23篇
  2002年   15篇
  2001年   7篇
  2000年   12篇
  1999年   12篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1992年   7篇
  1991年   4篇
  1989年   2篇
  1988年   9篇
  1987年   3篇
  1986年   5篇
  1984年   2篇
  1982年   3篇
  1980年   3篇
  1979年   4篇
  1977年   9篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1971年   4篇
  1970年   2篇
  1969年   1篇
  1967年   3篇
  1965年   1篇
排序方式: 共有499条查询结果,搜索用时 15 毫秒
221.
The condensation of free DNA into toroidal structures in the presence of multivalent ions and polypeptides is well known. Recent single molecule experiments have shown that condensation into toroids occurs even when the DNA molecule is subjected to tensile forces. Here we show that the combined tension and torsion of DNA in the presence of condensing agents dramatically modifies this picture by introducing supercoiled DNA as a competing structure in addition to toroids. We combine a fluctuating elastic rod model of DNA with phenomenological models for DNA interaction in the presence of condensing agents to compute the minimum energy configuration for given tension and end-rotations. We show that for each tension there is a critical number of end-rotations above which the supercoiled solution is preferred and below which toroids are the preferred state. Our results closely match recent extension rotation experiments on DNA in the presence of spermine and other condensing agents. Motivated by this, we construct a phase diagram for the preferred DNA states as a function of tension and applied end-rotations and identify a region where new experiments or simulations are needed to determine the preferred state.  相似文献   
222.
Sliding clamps are oligomeric ring-shaped proteins that increase the efficiency of DNA replication. The stability of the Escherichia coli β-clamp, a homodimer, is particularly remarkable. The dissociation equilibrium constant of the β-clamp is of the order of 10 pM in buffers of moderate ionic strength. Coulombic electrostatic interactions have been shown to contribute to this remarkable stability. Increasing NaCl concentration in the assay buffer results in decreased dimer stability and faster subunit dissociation kinetics in a way consistent with simple charge-screening models. Here, we examine non-Coulombic ionic effects on the oligomerization properties of sliding clamps. We determined relative diffusion coefficients of two sliding clamps using fluorescence correlation spectroscopy. Replacing NaCl by KGlu, the primary cytoplasmic salt in E. coli, results in a decrease of the diffusion coefficient of these proteins consistent with the formation of protein assemblies. The UV-vis spectrum of the β-clamp labeled with tetramethylrhodamine shows the characteristic absorption band of dimers of rhodamine when KGlu is present in the buffer. This suggests that KGlu induces the formation of assemblies that involve two or more rings stacked face-to-face. Results can be quantitatively explained on the basis of unfavorable interactions between KGlu and the functional groups on the protein surface, which drive biomolecular processes that bury exposed surface. Similar results were obtained with the Saccharomyces cerevisiae PCNA sliding clamp, suggesting that KGlu effects are not specific to the β-clamp. Clamp association is also promoted by glycine betaine, a zwitterionic compound that accumulates intracellularly when E. coli is exposed to high concentrations of extracellular solute. Possible biological implications are discussed.  相似文献   
223.
The Polo-like kinases (Plks) are a conserved subfamily of serine-threonine protein kinases that have significant roles in cell proliferation. The serine/threonine protein kinases or polo-like kinase 1 (PLK1) exist in centrosome during interphase and is an important regulatory enzyme in cell cycle progression during M phase. Mutations in mammalian PLK1 were found to be over expressed in various human cancers and it is disrupting the binding ability of polo box domain with target peptide. In this analysis we implemented a computational approach to filter the most deleterious and cancer associated mutation on PLK1 protein. We found W414F as the most deleterious and cancer associated by Polyphen 2.0, SIFT, I-mutant 3.0, PANTHER, PhD-SNP, SNP&GO, Mutpred and Dr Cancer tools. Molecular docking and molecular dynamics simulation (MDS) approach was used to investigate the structural and functional behavior of PLK1 protein upon mutation. MDS and docking results showed stability loss in mutant PLK1 protein. Due to mutation, PLK1 protein became more flexible and alters the dynamic property of protein which might affect the interaction with target peptide and leads to cell proliferation. Our study provided a well designed computational methodology to examine the cancer associated nsSNPs and their molecular mechanism. It further helps scientists to develop a drug therapy against PLK1 cancer-associated diseases.
Figure
Flow chart of in-silico screening of cancer associated mutation on PLK1 protein and its structural consequences studies.  相似文献   
224.
The neuromuscular acetylcholine (ACh) receptor has two conserved prolines in loop D of the complementary subunit at each of its two transmitter-binding sites (α-ϵ and α-δ). We used single-channel electrophysiology to estimate the energy changes caused by mutations of these prolines with regard to unliganded gating (ΔG0) and the affinity change for ACh that increases the open channel probability (ΔGB). The effects of mutations of ProD2 (ϵPro-121/δPro-123) were greater than those of its neighbor (ϵPro-120/δPro-122) and were greater at α-ϵ versus α-δ. The main consequence of the congenital myasthenic syndrome mutation ϵProD2-L was to impair the establishment of a high affinity for ACh and thus make ΔGB less favorable. At both binding sites, most ProD2 mutations decreased constitutive activity (increased ΔG0). LRYHQG and RL substitutions reduced substantially the net binding energy (made ΔGBACh less favorable) by ≥2 kcal/mol at α-ϵ and α-δ, respectively. Mutant cycle analyses were used to estimate energy coupling between the two ProD2 residues and between each ProD2 and glycine residues (αGly-147 and αGly-153) on the primary (α subunit) side of each binding pocket. The distant binding site prolines interact weakly. ProD2 interacts strongly with αGly-147 but only at α-ϵ and only when ACh is present. The results suggest that in the low to-high affinity change there is a concerted inter-subunit strain in the backbones at ϵProD2 and αGly-147. It is possible to engineer receptors having a single functional binding site by using a α-ϵ or α-δ ProD2-R knock-out mutation. In adult-type ACh receptors, the energy from the affinity change for ACh is approximately the same at the two binding sites (approximately −5 kcal/mol).  相似文献   
225.
Pseudomonas is a highly versatile bacterium at the species level with great ecological significance. These genetically and metabolically diverse species have undergone repeated taxonomic revisions. We propose a strategy to identify Pseudomonas up to species level, based on the unique features of their 16S rDNA (rrs) gene sequence, such as the frame work of sequences, sequence motifs and restriction endonuclease (RE) digestion patterns. A species specific phylogenetic framework composed of 31 different rrs sequences, allowed us to segregate 1,367 out of 2,985 rrs sequences of this genus, which have been classified at present only up to genus (Pseudomonas) level, as follows: P. aeruginosa (219 sequences), P. fluorescens (463 sequences), P. putida (347 sequences), P. stutzeri (197 sequences), and P. syringae (141 sequences). These segregations were validated by unique 30–50 nucleotide long motifs and RE digestion patterns in their rrs. A single gene thus provides multiple makers for identification and surveillance of Pseudomonas.  相似文献   
226.
KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805–850) by conducting molecular dynamics simulation (~100?ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.  相似文献   
227.
ABSTRACT

Formation of insoluble toxic aggregates by hIAPP polypeptide is found to be a core component for disease pathogenicity of patients suffering from type II diabetes. Naturally occurring polyphenols that possess anti-aggregation property are being majorly studied in the current scenario for treating various conformational diseases. Herein, we study the disaggregation mechanism of naturally occurring polyphenol baicalein, obtained from the roots of S. baicalensis and Indian trumpet flower on hIAPP dimer using quantum chemical calculation and discrete molecular dynamics. Our study reported that a drastic loss in the secondary structural propensity of hIAPP was seen upon binding of baicalein. Notably, the hydrophobic core and the phenolic groups present in the ends of baicalein molecule play a key role in inhibiting the aggregates formed upon binding to the amyloidogenic core region of hIAPP. Thus, our study provides a comprehensive understanding over the disaggregation effect of baicalein on hIAPP dimer from a computational point of view and thereby bridging the gap for future therapeutic strategy in designing the anti-aggregation compounds that inhibit hIAPP amyloids.  相似文献   
228.
229.
230.
Chemical investigation of the stem bark of Oroxylum indicum resulted in the isolation and characterization of two new flavonoid glycosides (1, 2), along with seven known compounds (3–9). Their structures were established on the basis of extensive spectroscopic (IR, MS, 2D NMR) data analysis and by the comparison with spectroscopic data reported in the literature. In addition, all the compounds were tested for their ulcer protective effects against various gastric ulceritis inducing models in rats.  相似文献   
[首页] « 上一页 [18] [19] [20] [21] [22] 23 [24] [25] [26] [27] [28] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号