首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   18篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   14篇
  2011年   15篇
  2010年   5篇
  2009年   7篇
  2008年   12篇
  2007年   8篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  2000年   8篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1985年   4篇
  1978年   1篇
  1975年   1篇
排序方式: 共有173条查询结果,搜索用时 20 毫秒
91.
The aim of the present work was to study the effects of an unilateral ischaemic-reperfusion injury on Na+, K+-ATPase activity, α1 and β1 subunits protein and mRNA abundance and ATP content in cortical and medullary tissues from postischaemic and contralateral kidneys. Right renal artery was clamped for 40 min followed by 24 and 48 h of reperfusion. Postischaemic and contralateral renal function was studied cannulating the ureter of each kidney. Postischaemic kidneys after 24 (IR24) and 48 (IR48) hours of reperfusion presented a significant dysfunction. Na+, K+-ATPase α1 subunit abundance increased in IR24 and IR48 cortical tissue and β1 subunit decreased in IR48. In IR24 medullary tissue, α1 abundance increased and returned to control values in IR48 while β1 abundance was decreased in both periods. Forty minutes of ischaemia without reperfusion (I40) promoted an increment in α1 mRNA in cortex and medulla that normalised after 24 h of reperfusion. β1 mRNA was decreased in IR24 medullas. No changes were observed in contralateral kidneys. This work provides evidences that after an ischaemic insult α1 and β1 protein subunit abundance and mRNA levels are independently regulated. After ischaemic-reperfusion injury, cortical and medullary tissue showed a different pattern of response. Although ATP and Na+, K+-ATPase activity returned to control values, postischemic kidney showed an abnormal function after 48 h of reflow.  相似文献   
92.
Anaerobic ruminal fungi may play an active role in fibre degradation as evidenced by the production of different fibrolytic enzymes in culture filtrate. In the present study, 16 anaerobic fungal strains were isolated from ruminal and faecal samples of sheep and goats. Based on their morphological characteristics they were identified as species of Anaeromyces, Orpinomyces, Piromyces and Neocallimastix. Isolated Neocallimastix sp. from goat rumen showed a maximum activity of CMCase (47.9 mIU ml(-1)) and filter paper cellulase (48.3 mIU ml(-1)), while Anaeromyces sp. from sheep rumen showed a maximum xylanolytic activity (48.3 mIU ml(-1)). The cellobiase activity for all the isolates ranged from 178.0-182.7 mIU ml(-1). Based on the enzymatic activities, isolated Anaeromyces sp. from sheep rumen and Neocallimastix sp. from goat rumen were selected for their potential of in vitro fibre degradation. The highest in vitro digestibility of NDF (23.2%) and DM (34.4%) was shown for Neocallimastix sp. from goat rumen, as compared to the digestibility of NDF and DM in the control group of 17.5 and 25.0%, respectively.  相似文献   
93.
Drug discovery initiatives often depend critically on knowledge of ligand-receptor interactions. However, the identity or structure of the target receptor may not be known in every instance. The concept of receptor surrogate, a molecular environment mimic of natural receptor, may prove beneficial under such circumstances. Here, we demonstrate the potential of monoclonal antibodies (mAbs) to act as surrogate receptors for a class of innate immune peptide antibiotics, a strategy that can help comprehend their action mechanism and identify chemical entities crucial for activity. A panel of antibody surrogates was raised against indolicidin, a tryptophan-rich cationic broad spectrum antimicrobial peptide of innate immune origin. Employing an elegant combination of thermodynamics, crystallography, and molecular modeling, interactions of the peptide with a high affinity anti-indolicidin monoclonal antibody were analyzed and were used to identify a motif that contained almost the entire antibiotic activity of native indolicidin. The analysis clarified the interaction of the peptide with previously proposed targets such as bacterial cell membrane and DNA and could further be correlated with antimicrobial compounds whose actions involve varied other mechanisms. These features suggest a multipronged assault pathway for indolicidin. Remarkably, the anti-indolicidin mAb surrogate was able to isolate additional independent bactericidal sequences from a random peptide library, providing compelling evidence as to the physiological relevance of surrogate receptor concept and suggesting applications in receptor-based pharmacophore research.  相似文献   
94.
Multi-drug resistant Pseudomonas aeruginosa (MDRPA) are emerging as a major threat in the hospitals as they have become resistant to current antibiotics. There is an immediate requirement of drugs with novel mechanisms as the pipeline of investigational drugs against these organisms is lean. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme that catalyzes the first committed step of bacterial cell wall biosynthesis is an ideal target for the discovery of novel antibiotics against Gram negative pathogens as they have only one copy of murA gene in its genome. We have performed biochemical characterization and comparative kinetic analysis of MurA from E. coli and P. aeruginosa. Both enzymes were active at broad range of pH with temperature optima of 37°C. Metal ions did not enhance the activity of both enzymes. These enzymes had an apparent affinity constant (K m ) for its substrate UDP-N-acetylglucosamine 36 ± 5.2 and 17.8 ± 2.5 μM and for phosphoenolpyruvate 0.84 ± 0.13 μM and 0.45 ± 0.07 μM for E. coli and P. aeruginosa enzymes respectively. Both the enzymes showed 5–7 fold shift in IC50 for the known inhibitor fosfomycin upon pre-incubation with the substrate UDP-N-acetylglucosamine. This observation was used to develop a novel rapid sensitive high throughput assay for the screening of MurA inhibitors.  相似文献   
95.
Bazedoxifene (BZA), a new selective estrogen receptor modulator (SERM) was recently approved in Europe for the prevention and treatment of postmenopausal osteoporosis. Combination therapy using BZA and conjugated estrogens (CE) is currently in late stage development representing a new paradigm for the treatment of menopausal symptoms and prevention of osteoporosis. A GeneChip microarray study was designed to compare gene expression profiles of BZA to that of other SERMs, raloxifene (RAL) and lasofoxifene (LAS). In addition, we compared the gene expression profiles of the three SERMs in combination with CE, a mixture of 10 most abundant estrogens present in Premarin. According to the hierarchical clustering heat map analysis, gene clusters that specifically responded to CE treatments or SERM treatments were identified and gene lists sorted based on a set of cutoff filters. A group of genes differentially regulated by CE were also identified to be antagonized by BZA when comparing CE with the BZA + CE treatment. All three SERMs showed significant antagonistic effect against CE-stimulated cell proliferation, based on the MCF-7 cell proliferation assay and GeneChip data, with the order of antagonist activity being BZA > RAL > LAS. These results indicate that SERMs in combination with CE exhibit differential pharmacology, and therefore, combinations of other SERMs and estrogen preparations may not yield the same effects that are observed in clinic by pairing BZA with CE.  相似文献   
96.
Inflammatory bowel disease(IBD), consisting primarily of ulcerative colitis and Crohn's disease, is a group of debilitating auto-immune disorders, which also increases the risk of colitis-associated cancer. However, due to the chronic nature of the disease and inconsistent treatment outcomes of current anti-IBD drugs(e.g., approximately 30% non-responders to anti-TNFα agents), and related serious side effects, about half of all IBD patients(in millions) turn to alternative treatment options. In this regard, mucosal healing is gaining acceptance as a measure of disease activity in IBD patients as recent studies have correlated the success of mucosal healing with improved prognosis. However, despite the increasing clinical realization of the significance of the concept of mucosal healing, its regulation and means of therapeutic targeting remain largely unclear. Here, stemcell therapy, which uses hematopoietic stem cells or mesenchymal stem cells, remains a promising option. Stem cells are the pluripotent cells with ability to differentiate into the epithelial and/or immune-modulatory cells. The overreaching concept is that the stem cells can migrate to the damaged areas of the intestine to provide curative help in the mucosal healing process. Moreover, by differentiating into the mature intestinal epithelial cells, the stem cells also help in restoring the barrier integrity of the intestinal lining and hence prevent the immunomodulatory induction, the root cause of the IBD. In this article, we elaborate upon the current status of the clinical management of IBD and potential role of the stem cell therapy in improving IBD therapy and patient's quality of life.  相似文献   
97.
98.
For nearly 150 years, it has been recognized that cell shape strongly influences the orientation of the mitotic cleavage plane (e.g., Hofmeister, 1863). However, we still understand little about the complex interplay between cell shape and cleavage-plane orientation in epithelia, where polygonal cell geometries emerge from multiple factors, including cell packing, cell growth, and cell division itself. Here, using mechanical simulations, we show that the polygonal shapes of individual cells can systematically bias the long-axis orientations of their adjacent mitotic neighbors. Strikingly, analyses of both animal epithelia and plant epidermis confirm a robust and nearly identical correlation between local cell topology and cleavage-plane orientation in vivo. Using simple mathematics, we show that this effect derives from fundamental packing constraints. Our results suggest that local epithelial topology is a key determinant of cleavage-plane orientation, and that cleavage-plane bias may be a widespread property of polygonal cell sheets in plants and animals.  相似文献   
99.
Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.  相似文献   
100.
Plants used in traditional medicine have stood up to the test of time and contributed many novel compounds for preventive and curative medicine to modern science. India is sitting on a gold mine of well recorded and traditionally well practiced knowledge of herbal medicine. Specially, plants growing at high altitude in Himalayan pastures are time-honored sources of health and general well being of local inhabitants. As of today, Himalayan plants are a major contributor to the herbal pharmaceutical industry both of India and other countries. Plants growing at higher altitudes are subjected to an assault of diverse testing situations including higher doses of mutagenic UV-radiation, physiological drought, desiccation and strong winds. Plants interact with stressful environments by physiological adaptation and altering the biochemical profile of plant tissues and producing a spectrum of secondary metabolites. Secondary metabolites are of special interest to scientists because of their unique pharmacophores and medicinal properties. Secondary metabolites like polyphenols, terpenes and alkaloids have been reported to possess antimutagenic and anticancer properties in many studies. The fundamental aspiration of the current review is to divulge the antimutagenic/anticancer potential of five alpine plants used as food or medicine by the populations living at high altitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号