全文获取类型
收费全文 | 99篇 |
免费 | 6篇 |
专业分类
105篇 |
出版年
2021年 | 1篇 |
2018年 | 3篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 5篇 |
2012年 | 6篇 |
2011年 | 3篇 |
2010年 | 6篇 |
2009年 | 4篇 |
2008年 | 6篇 |
2007年 | 2篇 |
2006年 | 3篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 4篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 7篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1975年 | 2篇 |
1974年 | 5篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有105条查询结果,搜索用时 46 毫秒
31.
John L. Converse Robert M. Kovatch James D. Pulliam Stanley C. Nagle Jr. Ernest M. Snyder 《Applied microbiology》1971,21(6):1053-1057
Viscerotropic virulence of the Asibi strain of yellow fever virus (YFV) for monkeys has been known to be lost after serial passage in HeLa cell monolayers. This phenomenon was investigated in several other mammalian and insect tissue cell lines. Assay in monkeys of original seed virus and of virus after 7 and 11 passages in a porcine kidney cell line (PK) indicated essentially equal infectivity and mortality. Moreover, monkeys receiving the passaged virus exhibited more rapid onset of disease and death than animals infected with original seed virus. Histological changes in animals inoculated with passaged virus were identical to those in animals receiving the seed virus. Virus from later passages in PK cells was also lethal for approximately 50% of the monkeys; however, evidence for progressive attenuation was seen in these preparations. Similar results were obtained with a mosquito (Aedes aegypti) cell line. In contrast to results obtained in PK and mosquito cells, YFV became essentially avirulent (nonlethal and less infective) for monkeys after only seven passages in HeLa cell cultures. 相似文献
32.
Sherin Antony Peeyush Kumar T Jobin Mathew TR Anju CS Paulose 《Journal of biomedical science》2010,17(1):7
Glucose homeostasis in humans is an important factor for the functioning of nervous system. Hypoglycemia and hyperglycemia is found to be associated with central and peripheral nerve system dysfunction. Changes in acetylcholine receptors have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). In the present study we showed the effects of insulin induced hypoglycemia and streptozotocin induced diabetes on the cerebellar cholinergic receptors, GLUT3 and muscle cholinergic activity. Results showed enhanced binding parameters and gene expression of Muscarinic M1, M3 receptor subtypes in cerebellum of diabetic (D) and hypoglycemic group (D + IIH and C + IIH). α7nAchR gene expression showed a significant upregulation in diabetic group and showed further upregulated expression in both D + IIH and C + IIH group. AchE expression significantly upregulated in hypoglycemic and diabetic group. ChAT showed downregulation and GLUT3 expression showed a significant upregulation in D + IIH and C + IIH and diabetic group. AchE activity enhanced in the muscle of hypoglycemic and diabetic rats. Our studies demonstrated a functional disturbance in the neuronal glucose transporter GLUT3 in the cerebellum during insulin induced hypoglycemia in diabetic rats. Altered expression of muscarinic M1, M3 and α7nAchR and increased muscle AchE activity in hypoglycemic rats in cerebellum is suggested to cause cognitive and motor dysfunction. Hypoglycemia induced changes in ChAT and AchE gene expression is suggested to cause impaired acetycholine metabolism in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. The results shows that cerebellar cholinergic neurotransmission is impaired during hyperglycemia and hypoglycemia and the hypoglycemia is causing more prominent imbalance in cholinergic neurotransmission which is suggested to be a cause of cerebellar dysfunction associated with hypoglycemia. 相似文献
33.
Coinfection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) challenges the immune system with two viruses that elicit distinct immune responses. Chronic immune activation is a hallmark of HIV infection and an accurate indicator of disease progression. Suppressing HIV viremia by antiretroviral therapy (ART) effectively prolongs life and significantly improves immune function. HIV/HCV coinfected individuals have peripheral immune activation despite effective ART control of HIV viral load. Here we examined freshly isolated CD14 monocytes for gene expression using high-density cDNA microarrays and analyzed T cell subsets, CD4 and CD8, by flow cytometry to characterize immune activation in monoinfected HCV and HIV, and HIV-suppressed coinfected subjects. To determine the impact of coinfection on cognition, subjects were evaluated in 7 domains for neuropsychological performance, which were summarized as a global deficit score (GDS). Monocyte gene expression analysis in HIV-suppressed coinfected subjects identified 43 genes that were elevated greater than 2.5 fold. Correlative analysis of subjects’ GDS and gene expression found eight genes with significance after adjusting for multiple comparisons. Correlative expression of six genes was confirmed by qPCR, five of which were categorized as type 1 IFN response genes. Global deficit scores were not related to plasma lipopolysaccharide levels. In the T cell compartment, coinfection significantly increased expression of activation markers CD38 and HLADR on both CD4 and CD8 T cells but did not correlate with GDS. These findings indicate that coinfection is associated with a type 1 IFN monocyte activation profile which was further found to correlate with cognitive impairment, even in subjects with controlled HIV infection. HIV-suppressed coinfected subjects with controlled HIV viral load experiencing immune activation could benefit significantly from successful anti-HCV therapy and may be considered as preferential candidates. 相似文献
34.
Lifelong reduction in complex IV induces tissue‐specific metabolic effects but does not reduce lifespan or healthspan in mice 下载免费PDF全文
Sathyaseelan S. Deepa Gavin Pharaoh Michael Kinter Vivian Diaz Wilson C. Fok Kaitlyn Riddle Daniel Pulliam Shauna Hill Kathleen E. Fischer Vanessa Soto Constantin Georgescu Jonathan D. Wren Carlo Viscomi Arlan Richardson Holly Van Remmen 《Aging cell》2018,17(4)
Loss of SURF1, a Complex IV assembly protein, was reported to increase lifespan in mice despite dramatically lower cytochrome oxidase (COX) activity. Consistent with this, our previous studies found advantageous changes in metabolism (reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis) in Surf1?/? mice. The lack of deleterious phenotypes in Surf1?/? mice is contrary to the hypothesis that mitochondrial dysfunction contributes to aging. We found only a modest (nonsignificant) extension of lifespan (7% median, 16% maximum) and no change in healthspan indices in Surf1?/? vs. Surf1+/+ mice despite substantial decreases in COX activity (22%–87% across tissues). Dietary restriction (DR) increased median lifespan in both Surf1+/+ and Surf1?/? mice (36% and 19%, respectively). We measured gene expression, metabolites, and targeted expression of key metabolic proteins in adipose tissue, liver, and brain in Surf1+/+ and Surf1?/? mice. Gene expression was differentially regulated in a tissue‐specific manner. Many proteins and metabolites are downregulated in Surf1?/? adipose tissue and reversed by DR, while in brain, most metabolites that changed were elevated in Surf1?/? mice. Finally, mitochondrial unfolded protein response (UPRmt)‐associated proteins were not uniformly altered by age or genotype, suggesting the UPRmt is not a key player in aging or in response to reduced COX activity. While the changes in gene expression and metabolism may represent compensatory responses to mitochondrial stress, the important outcome of this study is that lifespan and healthspan are not compromised in Surf1?/? mice, suggesting that not all mitochondrial deficiencies are a critical determinant of lifespan. 相似文献
35.
Molecular evolution of cytochrome c oxidase: rate variation among subunit VIa isoforms 总被引:2,自引:1,他引:2
Schmidt TR; Jaradat SA; Goodman M; Lomax MI; Grossman LI 《Molecular biology and evolution》1997,14(6):595-601
Cytochrome c oxidase (COX) consists of 13 subunits, 3 encoded in the
mitochondrial genome and 10 in the nucleus. Little is known of the role of
the nuclear-encoded subunits, some of which exhibit tissue-specific
isoforms. Subunit VIa is unique in having tissue-specific isoforms in all
mammalian species examined. We examined relative evolutionary rates for the
COX6A heart (H) and liver (L) isoform genes along the length of the
molecule, specifically in relation to the tissue-specific function(s) of
the two isoforms. Nonsynonymous (amino acid replacement) substitutions in
the COX6AH gene occurred more frequently than in the ubiquitously expressed
COX6AL gene. Maximum-parsimony analysis and sequence divergences from
reconstructed ancestral sequences revealed that after the ancestral COX6A
gene duplicated to yield the genes for the H and L isoforms, the sequences
encoding the mitochondrial matrix region of the COX VIa protein experienced
an elevated rate of nonsynonymous substitutions relative to synonymous
substitutions. This is expected for relaxed selective constraints after
gene duplication followed by purifying selection to preserve the
replacements with tissue-specific functions.
相似文献
36.
BENOÎT O. L. DEMARS JACQUELINE M. POTTS MICHÈLE TRÉMOLIÈRES GABRIELLE THIÉBAUT NATHALIE GOUGELIN VINCENT NORDMANN 《Freshwater Biology》2012,57(8):1745-1759
1. Recent studies have demonstrated that there is generally no unambiguous relationship between plant species composition and specific environmental conditions in rivers. Nevertheless, indices of environmental pressures based on macrophytes are flourishing, because of the requirements of the Water Framework Directive (WFD). 2. We first reviewed nine such indices against 13 criteria for bioindicators. Then, using data from France and England, we tested whether the IBMR (Macrophyte Biological Index for Rivers) and LEAFPACS (predictions and classification system for macrophytes) methods could reliably indicate nutrient and hydromorphological pressures. Finally, we used an improved bootstrapping method to estimate accuracy. 3. Currently, most indices lack ecological meaning for a variety of reasons, including partial sampling (backwaters are excluded); reliance on list of taxa (there are identification difficulties) rather than structure and functions; correlation rather than causation; application within a limited biogeographical area; reliance on ‘expert’ judgement; high precision but poor accuracy; poorly defined reference conditions; lack of independent tests; and an inability to discriminate reliably between the target pressures of interest from confounding background variables. 4. IBMR was a far better indicator of pH (or HCO3‐pCO2) than it was of soluble reactive phosphorus, SRP (or SRP‐NH4). While there was a highly significant correlation between IBMR and SRP after removing the effect of pH, the relationship was weak (r2 = 0.08, n = 215, P < 0.001). 5. LEAFPACS is a multi‐metric method summing up five individual indices, each compliant with the WFD. Its individual metrics were not better correlated with nutrient and hydromorphological pressures (with r2 < 0.1, n = 62, P < 0.05) than was the IBMR. The meaning of the overall metric is questionable. 6. There are problems in determining the precision of the indices, owing to uncertainties in recording, but they are less than the uncertainties in determining accuracy (because species optima and tolerances are sometimes poorly known). 7. Reliable information is needed to improve the state of our rivers. Macrophyte indices are able to detect statistically significant pressures from a large population of sites but cannot be applied at specific sites, as required by the WFD, owing to large uncertainties and low explanatory power. Typically, more than 90% of the variability in macrophyte indices is attributed to factors other than human pressure. The WFD would be better served by a simpler, holistic approach based on our current mechanistic understanding of river processes. These findings are likely to apply also to other taxonomic groups (macroinvertebrates, diatoms, fish) used in the assessment of purported ecological quality and to palaeolimnological measures of reference status. 相似文献
37.
R F Speck U Esser M L Penn D A Eckstein L Pulliam S Y Chan M A Goldsmith 《Current biology : CB》1999,9(10):547-550
Chemokine receptors, particularly CCR5 and CXCR4, act as essential coreceptors in concert with CD4 for cellular entry by human immunodeficiency virus type 1 (HIV-1; reviewed in [1]). But infection of CD4(-) cells has also been encountered in various tissues in vivo, including astrocytes, neurons and microvascular endothelial cells of the brain [2] [3] [4] [5] [6], epithelial cells [5] [7], CD4(-) lymphocytes and thymocytes [8] [9], and cardiomyocytes [10]. Here, we present evidence for the infection of CD4(-) cell lines bearing coreceptors by well-known HIV-1 strains when co-cultured with CD4(+) cells. This process requires contact between the coreceptor-bearing and CD4(+) cells and supports the full viral replication cycle within the coreceptor-bearing target cell. Furthermore, CD4 provided in trans facilitates infection of primary human cells, such as brain-derived astrocytes. Although the pathobiological significance of infection of CD4(-) cells in vivo remains to be elucidated, this trans-receptor mechanism may facilitate generation of hidden reservoirs of latent virus that confound antiviral therapies and that contribute to specific AIDS-associated clinical syndromes. 相似文献
38.
Tracey R. Pulliam Holoman Margaret A. Elberson Leah A. Cutter Harold D. May Kevin R. Sowers 《Applied and environmental microbiology》1998,64(9):3359-3367
Defined microbial communities were developed by combining selective enrichment with molecular monitoring of total community genes coding for 16S rRNAs (16S rDNAs) to identify potential polychlorinated biphenyl (PCB)-dechlorinating anaerobes that ortho dechlorinate 2,3,5,6-tetrachlorobiphenyl. In enrichment cultures that contained a defined estuarine medium, three fatty acids, and sterile sediment, a Clostridium sp. was predominant in the absence of added PCB, but undescribed species in the δ subgroup of the class Proteobacteria, the low-G+C gram-positive subgroup, the Thermotogales subgroup, and a single species with sequence similarity to the deeply branching species Dehalococcoides ethenogenes were more predominant during active dechlorination of the PCB. Species with high sequence similarities to Methanomicrobiales and Methanosarcinales archaeal subgroups were predominant in both dechlorinating and nondechlorinating enrichment cultures. Deletion of sediment from PCB-dechlorinating enrichment cultures reduced the rate of dechlorination and the diversity of the community. Substitution of sodium acetate for the mixture of three fatty acids increased the rate of dechlorination, further reduced the community diversity, and caused a shift in the predominant species that included restriction fragment length polymorphism patterns not previously detected. Although PCB-dechlorinating cultures were methanogenic, inhibition of methanogenesis and elimination of the archaeal community by addition of bromoethanesulfonic acid only slightly inhibited dechlorination, indicating that the archaea were not required for ortho dechlorination of the congener. Deletion of Clostridium spp. from the community profile by addition of vancomycin only slightly reduced dechlorination. However, addition of sodium molybdate, an inhibitor of sulfate reduction, inhibited dechlorination and deleted selected species from the community profiles of the class Bacteria. With the exception of one 16S rDNA sequence that had the highest sequence similarity to the obligate perchloroethylene-dechlorinating Dehalococcoides, the 16S rDNA sequences associated with PCB ortho dechlorination had high sequence similarities to the δ, low-G+C gram-positive, and Thermotogales subgroups, which all include sulfur-, sulfate-, and/or iron(III)-respiring bacterial species.The extensive industrial use of polychlorinated biphenyls (PCBs) during the 20th century has resulted in the release of an estimated several million pounds of PCBs into the environment (2). Due to the hydrophobicity and chemical stability of these compounds, PCBs ultimately accumulate in subsurface anaerobic sediments, where reductive dechlorination by anaerobic microorganisms is proposed to be an essential step in PCB degradation and detoxification (6). Although anaerobic reductive dechlorination has been documented in the environment and in the laboratory, attempts to identify and isolate anaerobic PCB-dechlorinating microbes by classical enrichment and isolation techniques have been unsuccessful (for a review, see reference 2). Isolation of anaerobic PCB-dechlorinating microbes has been hindered in part by the inability to maintain and sequentially transfer dechlorinating consortia in defined medium. May et al. (24) were the first to demonstrate that single colonies could be obtained by plating highly enriched PCB-dechlorinating enrichment cultures on agar-solidified media. Although two of the colonies exhibited para dechlorination activity when transferred back to liquid enrichment medium, the colonies contained a mixed community of microorganisms and dechlorination required the addition of sediment to the medium. More recently, highly enriched PCB-ortho-dechlorinating enrichment cultures were developed from Baltimore Harbor sediments in minimal media that contained sediments and a single congener (3) or Aroclor 1260 (37). These were the first confirmed reports of sustained ortho dechlorination of PCBs throughout sequential transfers in medium with estuarine sediments. Finally, Cutter et al. demonstrated that a consortium of PCB-ortho-dechlorinating anaerobes from Baltimore Harbor could be sequentially transferred and maintained in minimal medium without the addition of sterile sediment (9). With the ability to maintain PCB dechlorination in a completely defined medium, highly enriched PCB-dechlorinating consortia could be developed by sequential transfers in medium that contained the minimal growth requirements for dechlorinating species.The current study identifies putative PCB-dechlorinating anaerobes in ortho-dechlorinating enrichment cultures by a comprehensive approach that combines traditional selective enrichment techniques with molecular monitoring (SEMM). Microbial consortia enriched for PCB ortho dechlorination in minimal medium were analyzed by comparative sequence analysis of genes coding for 16S rRNA (16S rDNA) amplified from total community DNAs. Protocols were developed for chromosomal DNA extraction from sediment, 16S rDNA amplification by PCR, cloning of partial 16S rDNA PCR fragments, screening by restriction fragment length polymorphism (RFLP) analysis, and DNA sequencing for comparative sequence analysis. By utilizing these techniques, shifts in the microbial community were monitored as the cultures were further enriched for PCB-dechlorinating anaerobes by elimination of undefined medium components (i.e., sediment), changes in carbon source, and addition of selective physiological inhibitors. The results presented herein demonstrate the applicability of the SEMM approach for the selection and monitoring of highly defined PCB-dechlorinating microbial consortia. 相似文献
39.
40.
Patterns and rates of wetland methane emissions and their sensitivity to potential climate change are critical components of the global methane cycle. In this study, we use empirical simulation models to investigate these processes in floodplain swamps of the Ogeechee River in Georgia, U.S.A. We developed statistical models that relate methane emissions to monthly climate and river flow based on field observations of methane emissions from this system made during 1987–1989. Models were then applied to observed climate and hydrograph for 1937–1989 and to simulated altered climates. Altered climates were generated from the present-day climate by changing monthly temperatures by a constant amount and/or changing monthly precipitation by a constant proportion, thus altering long-term averages and preserving year-to-year variation.Under the present-day climate regime, simulated methane emissions were variable between years and responded very strongly to changes in river discharge. The long-term average was 27 g C m-2 yr-1, with no significant linear trend over the model period. In the altered climate simulations, methane emissions were very sensitive to changes in precipitation amounts, with a 20% decrease in rainfall resulting in 30–43% declines in methane emissions. Predicted effects of temperature changes on methane emissions were less consistent, and were strongly dependent on assumptions made about the response of evapotranspiration to elevated temperatures. In general, hydrologic impacts of changes in evapotranspiration rates (such as may occur in response to temperature shifts) were more important than direct temperature effects on methane production. 相似文献