首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   9篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   7篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1992年   1篇
  1977年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
41.
Pugnaire  Francisco I.  Lozano  Javier 《Plant Ecology》1997,131(2):207-213
Cistus clusii is an early successional shrub, the most drought-resistant species of Cistus which colonises perturbed areas in the southern Iberian Peninsula and regenerates entirely from seeds after a fire. Some of the factors controlling germination and seedling establishment were examined in a field experiment in which we tested the effect of soil disturbance, fire, and litter accumulation on seedling emergence. In a first experiment, soil disturbance and fire were applied to plots in the field with a factorial design in April 1992. In a second experiment, we measured the effect of adding C. clusii litter. The number of seedlings, annual plants and grasses, and the coverage of mosses were recorded in 1993 and 1994.Soil disturbance increased the number of C. clusii seedlings almost seven-fold but did not change the number of grasses, annual plants nor moss cover. Fire significantly increased the number of C. clusii seedlings only in combination with soil disturbance, and it did not affect the presence of annuals, grasses nor moss cover. Litter increased the number of C. clusii seedlings in the following two years.Overall, soil disturbance as a single factor had the most significant effect on seedling emergence, though plots disturbed and treated with fire had the highest number of seedlings, implying that germination of C. clusii seeds was enhanced by processes that alter the hard seed coat and break the physical dormancy imposed by the testa. In addition, recruitment of C. clusii was dependent on rainfall, as drought significantly reduced the number of seedlings appearing in winter.  相似文献   
42.
Abstract. Competition and facilitation may occur simultaneously in plant communities, and the prevalence of either process depends on abiotic conditions. Here we attempt a community‐wide approach in the analysis of plant interactions, exploring whether in a semi‐arid environment positive or negative interactions predominate and whether there are differences among co‐occurring shrub species. Most shrubs in our plot exerted significant effects on their understorey communities, ranging from negative to positive. We found a clear case of interference and another case where the effect was neutral, but facilitation predominated and the biomass of annuals under most shrubs in our community was larger than in gaps. Effects on soil water and fertility were revealed as the primary source of facilitation; the build‐up of soil organic matter changed soil physical properties and improved soil water relations. Facilitation by shrubs involved decoupling of soil temperature and moisture. Sheltering from direct radiation had an effect on productivity, but significant differences in understorey biomass did not parallel understorey light environment. A positive balance of the interaction among plants, essentially mediated by changes in soil properties, is the predominant outcome of plant interactions in this semi‐arid community.  相似文献   
43.
Rethinking plant community theory   总被引:19,自引:0,他引:19  
Plant communities have traditionally been viewed as either a random collection of individuals or as organismal entities. For most ecologists however, neither perspective provides a modern comprehensive view of plant communities, but we have yet to formalize the view that we currently hold. Here, we assert that an explicit re-consideration of formal community theory must incorporate interactions that have recently been prominent in plant ecology, namely facilitation and indirect effects among competitors. These interactions do not suppport the traditional individualistic perspective. We believe that rejecting strict individualistic theory will allow ecologists to better explain variation occurring at different spatial scales, synthesize more general predictive theories of community dynamics, and develop models for community-level responses to global change. Here, we introduce the concept of the integrated community (IC) which proposes that natural plant communities range from highly individualistic to highly interdependent depending on synergism among: (i) stochastic processes, (ii) the abiotic tolerances of species, (iii) positive and negative interactions among plants, and (iv) indirect interactions within and between trophic levels. All of these processes are well accepted by plant ecologists, but no single theory has sought to integrate these different processes into our concept of communities.  相似文献   
44.
Nucleation is a successional process in which extant vegetation facilitates seed dispersal and recruitment of other individuals and species around focal points in the landscape, leading to ecosystem recovery. This is an important process in disturbed sites where regeneration is limited by abiotic conditions or restrictive seed dispersal. We investigated forest recovery in a large burned area of evergreen temperate rainforest in southern Chile subjected to seasonal soil waterlogging, and assessed the relevance of nucleation processes in overcoming biotic and physical barriers for tree species regeneration. We measured richness and abundance of woody species in relation to patch size, as well as abiotic factors such as light and soil moisture within and outside patches. We found higher tree regeneration in existing patches than in open areas. We recorded an increase of patch size over time, associated with the increase in number of individuals and tree species. Soils in open areas were waterlogged, especially in winter, while patches were not. Trees in patches also acted as perches, enhancing bird-mediated seed rain. Seeds of fleshy-fruited tree species arrived first at patches and seedlings were more frequent in smaller, younger patches, while the number of seedlings of trees with wind-dispersed seeds increased in larger, older patches. Our study shows that woody species seem incapable of recruiting in open and waterlogged soils and depend strongly on extant vegetation patches to establish. In this fire-disturbed evergreen temperate forest regeneration occurs via nucleation, where new individuals contribute to a centrifugal kind of patch growth.  相似文献   
45.
The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C–water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively affected by Pistacia. Salt also seems to mediate the interaction between the two species, negating the potential positive effects of an additional water source via hydraulic lift.  相似文献   
46.
Question: Do solid‐walled polyethylene tubes and mesh fabric tubes improve the short‐term survival of eight Mediterranean tree and shrub species often used in the restoration of arid environments? Location: We conducted two experimental plantations in degraded field sites in the province of Almería (SE Spain), under arid Mediterranean conditions. Methods: One‐year‐old seedlings of Ceratonia siliqua, Juniperus phoenicea, Olea europaea, Pinus halepensis, Pinus pinaster, Quercus coccifera, Quercus ilex and Tetraclinis articulata were planted either sheltered by one of the above shelter tubes, or by being left unsheltered. Survival was recorded the first growing season after planting, which was a very dry season. Results: Overall, seedling survival ranged from as little as 0% to 24%, and tree shelters consistently enhanced survival in Quercus species only, ranging from 16% in walled shelters to 8% in mesh shelters. Shelters failed to boost survival in the six remaining species. Conclusion: The results of this study suggest that both walled and mesh shelters were mostly ineffective at increasing seedling survival for the Mediterranean species used in this experiment; these species coincide with those used in restoration programs. The use of shelters in restoration programs conducted in arid environments should be reconsidered, while walled shelters might be advisable for Mediterranean Quercus species only. Further research is necessary to develop and assess improved types of shelters for arid environments.  相似文献   
47.
Understorey vegetation in patches of Retama sphaerocarpa shrubsin semi-arid environments is dependent on the overstorey shrublife history. Community structure changes with shrub age asa result of physical amelioration of environmental conditionsby the canopy and organic matter accumulation in the soil. Weinvestigated the effect of the canopy on understorey speciesdiversity in the field and its relationships with the soil seedbank under 50 shrubs from 5 to 25+ years old, and compared speciescomposition in the field in a wet and a dry year. Species compositionof the soil seed bank under R. sphaerocarpa shrubs did not differsignificantly with shrub age, but seed density increased asthe shrubs aged. In the field, community composition changedwith shrub age, increasing species richness in a process thatdepended on the amount of spring rainfall. Our results suggestthat the soil seed bank is rather uniform and that the shrubcanopy strongly selects which species appear in the understorey.There were seeds of many species present under both young andold shrubs but which only established under old shrubs. Thisshowed dispersal was not limiting species abundance and suggestedthat the canopy was an important sorting factor for speciespresent in the understorey. Less frequent species contributedthe most to patch diversity, and rainfall effectively controlledspecies emergence. Understorey community composition dependedon multiple interspecific interactions, such as facilitationby the shrub and competition from neighbours, as well as ondispersal processes. Facilitation in this environment is a keyfeature in the structuring of plant communities and in governingecosystem functioning. Copyright 2000 Annals of Botany Company Community structure, competition, dispersal, facilitation, species composition, rainfall variability, Retama sphaerocarpa, seed bank, semi-arid environments  相似文献   
48.
Abstract— Na+-dependent ‘binding’ of β-alanine and GABA was examined with synaptosomal-mitochondrial fractions of rat brain incubated for 10 min at 0°C. GABA was bound to a much greater extent than β-alanine to particles of cerebral cortex, whole cerebellum and brain stem. For cerebral cortex, the binding capacity (Bmax) for GABA was about 18 limes greater than that for β-alanine. and the affinity of the particles for GABA was about 2′ times greater than for β-alanine. The order of potency of GABA binding to brain regions was cerebral cortex > cerebellum > brain stem, whereas that for β-alanine was the reverse. If the binding of β-alanine is taken to indicate the glial component of the Na+-dependent binding process for GABA, then most of the GABA was bound to neuronal elements under the conditions employed.  相似文献   
49.
Haase  Peter  Pugnaire  Francisco I.  Clark  S.C.  Incoll  L.D. 《Plant Ecology》1999,145(2):327-339
Seasonal changes in leaf demography and gas exchange physiology in the tall evergreen tussock grass Stipa tenacissima, one of the few dominant plant species in the driest vegetation of Europe, were monitored over a period of two years at a field site in semi-arid south-eastern Spain. Three age-classes of leaves – young, mature and senescent – were distinguished in the green canopy. Production of new leaves and extension growth of older leaves occurred exclusively from October–November to May–June. The rate of extension was significantly correlated with gravimetric soil water content. Leaf growth ceased after gravimetric soil water content fell below 0.015 g g–1 at the beginning of the dry season which corresponded to pre-dawn leaf water potentials of -3.0 MPa. Leaf senescence and desiccation reduced green leaf area by 43–49% during the dry season. Diurnal changes in the net photosynthetic rate of all three cohorts of leaves were bimodal with an early morning maximum, a pronounced midday depression and a small recovery late in the afternoon. Maximum photosynthetic rates of 10–16 mol CO2 m–2 s–1 were attained from November 1993 to early May 1994 in young and mature leaves. Photosynthetic rate declined strongly during the dry season and was at or below compensation in September 1994. Gas exchange variables of young and mature leaves were not significantly different, but photosynthetic rate and diffusive conductance to water vapour of senescing leaves were significantly lower than in the two younger cohorts. Leaf nitrogen content of mature leaves varied seasonally between 2.9 and 5.2 g m–2 (based on projected area of folded leaves), but was poorly correlated with maxima of the photosynthetic rate. There was a stronger linear relationship between the daily maxima of leaf conductance and pre-dawn leaf water potential than with atmospheric water vapour saturation deficit. Seasonal and between-year variation in daily carbon assimilation were caused mainly by differences in climatic conditions and canopy size whereas the effect of age structure of canopies was negligible. Since water is the most important limiting factor for growth and reproduction of S. tenacissima, any future rise in mean temperature, which might increase evapotranspiration, or decrease in rainfall, may considerably reduce the productivity of the grasslands, particularly at the drier end of their geographical distribution.  相似文献   
50.
Variability of inorganic nutrient concentrations in leaves   总被引:2,自引:0,他引:2  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号