首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1843篇
  免费   155篇
  国内免费   183篇
  2024年   5篇
  2023年   24篇
  2022年   47篇
  2021年   91篇
  2020年   80篇
  2019年   85篇
  2018年   62篇
  2017年   60篇
  2016年   72篇
  2015年   117篇
  2014年   135篇
  2013年   146篇
  2012年   171篇
  2011年   146篇
  2010年   108篇
  2009年   86篇
  2008年   120篇
  2007年   69篇
  2006年   66篇
  2005年   55篇
  2004年   45篇
  2003年   40篇
  2002年   42篇
  2001年   35篇
  2000年   34篇
  1999年   37篇
  1998年   17篇
  1997年   12篇
  1996年   14篇
  1995年   22篇
  1994年   18篇
  1993年   11篇
  1992年   12篇
  1991年   16篇
  1990年   10篇
  1989年   14篇
  1988年   14篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1973年   1篇
  1967年   1篇
  1956年   1篇
排序方式: 共有2181条查询结果,搜索用时 93 毫秒
81.
82.
Non-small-cell lung cancer (NSCLC) is one of the main causes of death induced by cancer globally. However, the molecular aberrations in NSCLC patients remain unclearly. In the present study, four messenger RNA microarray datasets (GSE18842, GSE40275, GSE43458, and GSE102287) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between NSCLC tissues and adjacent lung tissues were obtained from GEO2R and the overlapping DEGs were identified. Moreover, functional and pathway enrichment were performed by Funrich, while the protein–protein interaction (PPI) network construction were obtained from STRING and hub genes were visualized and identified by Cytoscape software. Furthermore, validation, overall survival (OS) and tumor staging analysis of selected hub genes were performed by GEPIA. A total of 367 DEGs (95 upregulated and 272 downregulated) were obtained through gene integration analysis. The PPI network consisted of 94 nodes and 1036 edges in the upregulated DEGs and 272 nodes and 464 edges in the downregulated DEGs, respectively. The PPI network identified 46 upregulated and 27 downregulated hub genes among the DEGs, and six (such as CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M) of that have not been identified to be associated with NSCLC so far. Moreover, the expression differences of the mentioned hub genes were consistent with that in lung adenocarcinoma and lung squamous cell carcinoma in the TCGA database. Further analysis showed that all the six hub genes were associated with tumor staging except MYH11, while only the upregulated DEG CENPE was associated with the worse OS of patients with NSCLC. In conclusion, the current study showed that CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M might be the key genes contributed to tumorigenesis or tumor progression in NSCLC, further functional study is needed to explore the involved mechanisms.  相似文献   
83.
Long noncoding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) has been identified as an oncogene in several cancers. However, the biological function and role of DANCR in hepatocellular carcinoma (HCC) remain unclear. Our current study aimed to investigate the detailed mechanism of DANCR in HCC. We found that DANCR was significantly upregulated in HCC cell lines in comparison to LO2 cells. Then, we observed that knockdown of DANCR could greatly inhibit Huh7 and HepG2 cell proliferation. In addition, HCC cell apoptosis was increased by silence of DANCR and meanwhile, cell cycle progression was blocked in G1 phase. Apart from these, downregulation of DANCR repressed HCC cell migration and invasion ability obviously. As predicted by the bioinformatics analysis, microRNA-216a-5p (miR-216a-5p) could serve as a direct target of DANCR. MiR-216a-5p has been reported to be involved in many cancers. Here, the correlation between miR-216a-5p and DANCR was confirmed using dual-luciferase reporter assay and radioimmunoprecipitation assay. Subsequently, Kruppel-like factor 12 (KLF12) exerts an important role in different tumor types. KLF12 can function as a downstream target of miR-216a-5p. Finally, the in vivo experiments were used and the data proved that DANCR also strongly suppressed HCC tumor growth in vivo via targeting miR-216a-5p and KLF12. In conclusion, our study indicated that DANCR might provide a new perspective for HCC treatment.  相似文献   
84.
Liu  Shuai  Li  Su  Fan  Xiao-Yang  Yuan  Guo-Di  Hu  Tao  Shi  Xian-Meng  Huang  Jun-Biao  Pu  Xiao-Yan  Wu  Chuan-Sheng 《Photosynthesis research》2019,141(2):245-257
Photosynthesis Research - Chlorophyll content in lichens is routinely used as an accurate indicator of lichen vigor, interspecific differences, and the effect of site-related environmental...  相似文献   
85.
86.
87.
Little is known about the regulatory mechanism of c-Src kinase in cells except the suggested regulation through phosphorylation and dephosphorylation of its carboxyl terminal tyrosine residue (Y527). We here demonstrated that exposure of NIH3T3 cells to mercuric chloride (HgCl2) induces both aggregation and activation of Src kinase protein through a redox-linked mechanism. The aggregation of Src proteins was suggested to be induced by the sulfhydryl groups-to-Hg2+ reaction-mediated polymerization of cell membrane proteins to which the Src proteins associate noncovalently. The possibility was ruled out that the aggregation occurred secondarily to the promotion of protein tyrosine phosphorylation. Further study revealed that the Src kinase was activated by HgCl2 at least in part independent of the known Csk kinase-linked or Y527-phosphorylation/dephosphorylation-mediated control. Correspondingly, CNBr cleavage mapping of phosphopeptides for autophosphorylated c-Src protein demonstrated selective promotion of phosphorylation at Y416 in HgCl2-treated cells without obvious change in the phosphorylation level at Y527. These results suggest a unique protein sulfhydryl modification-based pathway of signal transduction for activating Src kinase in NIH3T3 cells. © 1996 Wiley-Liss, Inc.  相似文献   
88.
Although several altered metabolic genes have been identified to be involved in the tumorigenesis and advance of pancreatic cancer (PC), their prognostic values remained unclear. The purpose of this study was to explore new targets and establish a metabolic signature to predict prognosis and chemotherapy response for optimal individualized treatment. The expression data of PC patients from two independent cohorts and metabolism-related genes from KEGG were utilized and analyzed for the establishment of the signature via lasso regression. Then, the differentially expressed candidate genes were further confirmed via online data mining platform and qRT-PCR of clinical specimens. Then, the analyses of gene set enrichment, mutation, and chemotherapeutic response were performed via R package. As results showed, 109 differentially expressed metabolic genes were screened out in PC. Then a metabolism-related five-gene signature comprising B3GNT3, BCAT1, KYNU, LDHA, and TYMS was constructed and showed excellent ability for predicting survival. A novel nomogram coordinating the metabolic signature and other independent prognostic parameters was developed and showed better predictive power in predicting survival. In addition, this metabolic signature was significantly involved in the activation of multiple oncological pathways and regulation of the tumor immune microenvironment. The patients with high risk scores had higher tumor mutation burdens and were prone to be more sensitive to chemotherapy. In summary, our work identified a new metabolic signature and established a superior prognostic nomogram which may supply more indications to explore novel strategies for diagnosis and treatment.  相似文献   
89.
Risk of metastasis is increased by the presence of chromosome 3 monosomy in uveal melanoma (UM). This study aimed to identify more accurate biomarker for risk of metastasis in UM. A total of 80 patients with UM from TCGA were assigned to two groups based on the metastatic status, and bioinformatic analyses were performed to search for critical genes for risk of metastasis. SLC25A38, located on chromosome 3, was the dominant downregulated gene in metastatic UM patients. Low expression of SLC25A38 was an independent predictive and prognostic factor in UM. The predictive potential of SLC25A38 expression was superior to that of pervious reported biomarkers in both TCGA cohort and GSE22138 cohort. Subsequently, its role in promoting metastasis was explored in vitro and in vivo. Knock-out of SLC25A38 could enhance the migration ability of UM cells, and promote distant metastasis in mice models. Through the inhibition of CBP/HIF-mediated pathway followed by the suppression of pro-angiogenic factors, SLC25A38 was situated upstream of metastasis-related pathways, especially angiogenesis. Low expression of SLC25A38 promotes angiogenesis and metastasis, and identifies increased metastatic risk and worse survival in UM patients. This finding may further improve the accuracy of prognostic prediction for UM.Subject terms: Eye cancer, Prognostic markers  相似文献   
90.
Genomic instability plays a key role in the initiation and progression of colorectal cancer (CRC). Although cancer driver genes in CRC have been well characterized, identifying novel genes associated with carcinogenesis and treatment remains challenging because of tumor heterogeneity. Here, we analyzed the genomic alterations of 45 samples from CRC patients in northern China by whole-exome sequencing. In addition to the identification of six well-known CRC driver genes (APC, TP53, KRAS, FBXW7, PIK3CA, and PABPC), two tumor-related genes (MTCH2 and HSPA6) were detected, along with RRP7A and GXYLT1, which have not been previously linked to cancer. GXYLT1 was mutated in 40% (18/45) of the samples in our cohort. Functionally, GXYLT1 promoted migration and invasion in vitro and metastasis in vivo, while the GXYLT1S212* mutant induced significantly greater effect. Furthermore, both GXYLT1 and GXYLT1S212* interacted with ERK2. GXYLT1 induced metastasis via a mechanism involving the Notch and MAPK pathways, whereas the GXYLT1S212* mutant mainly promoted metastasis by activating the MAPK pathway. We propose that GXYLT1 acts as a novel metastasis-associated driver gene and GXYLT1S212* might serve as a potential indicator for therapies targeting the MAPK pathway in CRC.Subject terms: Cancer genomics, Colorectal cancer, Metastasis, Oncogenes, Cell signalling  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号