首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   13篇
  2015年   14篇
  2014年   22篇
  2013年   22篇
  2012年   23篇
  2011年   16篇
  2010年   14篇
  2009年   9篇
  2008年   17篇
  2007年   11篇
  2006年   9篇
  2005年   7篇
  2004年   17篇
  2003年   9篇
  2002年   9篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1971年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
111.
Common carp (Cyprinus carpio) is one of world’s most invasive fish and managers have long searched for practical control strategies for this species. In temperate systems, common carp forms large winter aggregations that can be located with telemetry and removed with seine nets. This has been viewed as an excellent management possibility, but its success has been mixed. Using a modeling approach, we demonstrate that the usefulness of winter seining in controlling common carp in temperate North American lakes depends on whether carp populations are driven by one of two distinct recruitment dynamics. In lakes where carp can easily recruit within systems from which they are being removed, such as within productive lakes with poor communities of micropredators, winter seining is unlikely to be effective. Even very high removal rates (90 % adults annually) were not sufficient to reach management goal (biomass <100 kg/ha) in such systems. However, in regions with strong predatory communities where carp can recruit only in outlying, seasonally unstable marshes, removal rates as low as 30 % annually or 50 % every other year were able to reduce carp biomass below the management threshold. Such removal rates are achievable as they fall within the range of empirically measured values. Because many carp populations are driven by external recruitment dynamics, strategically conducted winter removal could be used to control this species in a large number of systems across temperate North America and elsewhere.  相似文献   
112.
The rodent retina is perhaps the most accessible mammalian system in which to investigate neurovascular interplay within the central nervous system (CNS). It is increasingly being recognized that several neurodegenerative diseases such as Alzheimer’s, multiple sclerosis, and amyotrophic lateral sclerosis present elements of vascular compromise. In addition, the most prominent causes of blindness in pediatric and working age populations (retinopathy of prematurity and diabetic retinopathy, respectively) are characterized by vascular degeneration and failure of physiological vascular regrowth. The aim of this technical paper is to provide a detailed protocol to study CNS vascular regeneration in the retina. The method can be employed to elucidate molecular mechanisms that lead to failure of vascular growth after ischemic injury. In addition, potential therapeutic modalities to accelerate and restore healthy vascular plexuses can be explored. Findings obtained using the described approach may provide therapeutic avenues for ischemic retinopathies such as that of diabetes or prematurity and possibly benefit other vascular disorders of the CNS.  相似文献   
113.
Final assembly of the procollagen I heterotrimeric molecule is initiated by interactions between the carboxyl propeptide domains of completed, or nearly completed nascent pro α chains. These interactions register the chains for triple helix folding. Prior to these events, however, the appropriate nascent chains must be brought within the same compartments of the endoplasmic reticulum (ER). We hypothesize that the co-localization of the synthesis of the nascent pro α1(I) and pro α2(I) chains results from an interaction between their translational complexes during chain synthesis. This has been investigated by studying the polyribosomal loading of the pro α-chain messages during in vitro translation in the presence and absence of microsomal membranes, and in cells which have the ability to synthesize the pro α1 homotrimer or the normal heterotrimer. Recombinant human pro α1(I) and pro α2(I) C DNAs were inserted into plasmids and then transcribed in vitro. The resulting RNAs were translated separately and in mixture in a cell-free rabbit reticulocyte lysate ± canine pancreatic microsomes. Cycloheximide (100 μg/ml) was added and the polysomes were collected and fractionated on a 15–50% sucrose gradient. The RNA was extracted from each fraction and the level of each chain message was determined by RT-PCR. Polysomes from K16 (heterotrimer-producing), W8 (pro α1(I) homotrimer), and A2′ (heterotrimer + homotrimer) cells were similarly analyzed. Translations of the pro α1(I) and pro α2(I) messages proceeded independently in the cell-free, membrane-free systems, but were coordinately altered in the presence of membrane. The cell-free + membrane translation systems mimicked the behavior of the comparable cell polysome mRNA loading distributions. These data all suggest that there is an interaction between the pro α chain translational complexes at the ER membrane surface which temporally and spatially localize the nascent chains for efficient heteromeric selection and folding. © 1995 Wiley-Liss, Inc.  相似文献   
114.
New human mutations are thought to originate in germ cells, thus making a recurrence of the same mutation in a sibling exceedingly rare. However, increasing sensitivity of genomic technologies has anecdotally revealed mosaicism for mutations in somatic tissues of apparently healthy parents. Such somatically mosaic parents might also have germline mosaicism that can potentially cause unexpected intergenerational recurrences. Here, we show that somatic mosaicism for transmitted mutations among parents of children with simplex genetic disease is more common than currently appreciated. Using the sensitivity of individual-specific breakpoint PCR, we prospectively screened 100 families with children affected by genomic disorders due to rare deletion copy-number variants (CNVs) determined to be de novo by clinical analysis of parental DNA. Surprisingly, we identified four cases of low-level somatic mosaicism for the transmitted CNV in DNA isolated from parental blood. Integrated probabilistic modeling of gametogenesis developed in response to our observations predicts that mutations in parental blood increase recurrence risk substantially more than parental mutations confined to the germline. Moreover, despite the fact that maternally transmitted mutations are the minority of alleles, our model suggests that sexual dimorphisms in gametogenesis result in a greater proportion of somatically mosaic transmitting mothers who are thus at increased risk of recurrence. Therefore, somatic mosaicism together with sexual differences in gametogenesis might explain a considerable fraction of unexpected recurrences of X-linked recessive disease. Overall, our results underscore an important role for somatic mosaicism and mitotic replicative mutational mechanisms in transmission genetics.  相似文献   
115.
Melanin synthesis in microorganisms--biotechnological and medical aspects   总被引:1,自引:0,他引:1  
Melanins form a diverse group of pigments synthesized in living organisms in the course of hydroxylation and polymerization of organic compounds. Melanin production is observed in all large taxa from both Pro- and Eukaryota. The basic functions of melanins are still a matter of controversy and speculation, even though their adaptative importance has been proved. Melanogenesis has probably evolved parallel in various groups of free living organisms to provide protection from environmental stress conditions, but in pathogenic microorganisms it correlates with an increased virulence. The genes responsible for melanization are collected in some cases within operons which find a versatile application in genetic engineering. This review summarizes current views on melanogenesis in Pro- and Eukaryotic microorganisms in terms of their biotechnological and biomedical importance.  相似文献   
116.
House dust mites produce potent allergens, Der p 1 and Der f 1, that cause allergic sensitization and asthma. Der p 1 and Der f 1 are cysteine proteases that elicit IgE responses in 80% of mite-allergic subjects and have proinflammatory properties. Their antigenic structure is unknown. Here, we present crystal structures of natural Der p 1 and Der f 1 in complex with a monoclonal antibody, 4C1, which binds to a unique cross-reactive epitope on both allergens associated with IgE recognition. The 4C1 epitope is formed by almost identical amino acid sequences and contact residues. Mutations of the contact residues abrogate mAb 4C1 binding and reduce IgE antibody binding. These surface-exposed residues are molecular targets that can be exploited for development of recombinant allergen vaccines.  相似文献   
117.
Angiogenesis of the microvasculature is central to the etiology of many diseases including proliferative retinopathy, age-related macular degeneration and cancer. A mouse model of microvascular angiogenesis would be very valuable and enable access to a wide range of genetically manipulated tissues that closely approximate small blood vessel growth in vivo. Vascular endothelial cells cultured in vitro are widely used, however, isolating pure vascular murine endothelial cells is technically challenging. A microvascular mouse explant model that is robust, quantitative and can be reproduced without difficulty would overcome these limitations. Here we characterized and optimized for reproducibility an organotypic microvascular angiogenesis mouse and rat model from the choroid, a microvascular bed in the posterior of eye. The choroidal tissues from C57BL/6J and 129S6/SvEvTac mice and Sprague Dawley rats were isolated and incubated in Matrigel. Vascular sprouting was comparable between choroid samples obtained from different animals of the same genetic background. The sprouting area, normalized to controls, was highly reproducible between independent experiments. We developed a semi-automated macro in ImageJ software to allow for more efficient quantification of sprouting area. Isolated choroid explants responded to manipulation of the external environment while maintaining the local interactions of endothelial cells with neighboring cells, including pericytes and macrophages as evidenced by immunohistochemistry and fluorescence-activated cell sorting (FACS) analysis. This reproducible ex vivo angiogenesis assay can be used to evaluate angiogenic potential of pharmacologic compounds on microvessels and can take advantage of genetically manipulated mouse tissue for microvascular disease research.  相似文献   
118.

Background

Albumins are multifunctional proteins present in the blood serum of animals. They can bind and transport a wide variety of ligands which they accommodate due to their conformational flexibility. Serum albumins are highly conserved both in amino acid sequence and three-dimensional structure. Several mammalian and avian serum albumins (SAs) are also allergens. Sensitization to one of the SAs coupled with the high degree of conservation between SAs may result in cross-reactive antibodies in allergic individuals. Sensitivity to SA generally begins with exposure to an aeroallergen, which can then lead to cross-sensitization to serum albumins present in food.

Scope of review

This review focuses on the allergenicity of SAs presented in a structural context.

Major conclusions

SA allergenicity is unusual taking into account the high sequence identity and similarity between SA from different species and human serum albumin. Cross-reactivity of human antibodies towards different SAs is one of the most important characteristics of these allergens.

General significance

Establishing a relationship between sequence and structure of different SAs and their interactions with antibodies is crucial for understanding the mechanisms of cross-sensitization of atopic individuals. Structural information can also lead to better design and production of recombinant SAs to replace natural proteins in allergy testing and desensitization. Therefore, structural analyses are important for diagnostic and treatment purposes. This article is part of a Special Issue entitled Serum Albumin.  相似文献   
119.
Osteopontin (OPN) is an acidic hydrophilic glycophosphoprotein that was first identified as a major sialoprotein in bones. It functions as a cell attachment protein displaying a RGD cell adhesion sequence and as a cytokine that signals through integrin and CD44 cell adhesion molecules. OPN is also implicated in human tumor progression and cell invasion. OPN has intrinsic transforming activity, and elevated OPN levels promote metastasis. OPN gene expression is also strongly activated in avian fibroblasts simultaneously transformed by the v-myc and v-mil(raf) oncogenes. Here we have investigated the solution structure of a 220-amino acid recombinant OPN protein by an integrated structural biology approach employing bioinformatic sequence analysis, multidimensional nuclear magnetic resonance spectroscopy, synchrotron radiation circular dichroism spectroscopy, and small-angle X-ray scattering. These studies suggest that OPN is an intrinsically unstructured protein in solution. Although OPN does not fold into a single defined structure, its conformational flexibility significantly deviates from random coil-like behavior. OPN comprises distinct local secondary structure elements with reduced conformational flexibility and substantially populates a compact subspace displaying distinct tertiary contacts. These compacted regions of OPN encompass the binding sites for α(V)β(III) integrin and heparin. The conformational flexibility combined with the modular architecture of OPN may represent an important structural prerequisite for its functional diversity.  相似文献   
120.
Chloroplasts and mitochondria are central to crucial cellular processes in plants and contribute to a whole range of metabolic pathways. The use of calcium ions as a secondary messenger in and around organelles is increasingly appreciated as an important mediator of plant cell signaling, enabling plants to develop or to acclimatize to changing environmental conditions. Here, we have studied the four calcium-dependent mitochondrial carriers that are encoded in the Arabidopsis genome. An unknown substrate carrier, which was previously found to localize to chloroplasts, is proposed to present a calcium-dependent S-adenosyl methionine carrier. For three predicted ATP/phosphate carriers, we present experimental evidence that they can function as mitochondrial ATP-importers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号