首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  38篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
排序方式: 共有38条查询结果,搜索用时 0 毫秒
21.
Different cold-water coral (CWC) species harbour distinct microbial communities and the community composition is thought to be linked to the ecological strategies of the host. Here we test whether diet shapes the composition of bacterial communities associated with CWC. We compared the microbiomes of two common CWC species in aquaria, Lophelia pertusa and Madrepora oculata, when they were either starved, or fed respectively with a carnivorous diet, two different herbivorous diets, or a mix of the 3. We targeted both the standing stock (16S rDNA) and the active fraction (16S rRNA) of the bacterial communities and showed that in both species, the corals' microbiome was specific to the given diet. A part of the microbiome remained, however, species-specific, which indicates that the microbiome's plasticity is framed by the identity of the host. In addition, the storage lipid content of the coral tissue showed that different diets had different effects on the corals' metabolisms. The combined results suggest that L. pertusa may be preying preferentially on zooplankton while M. oculata may in addition use phytoplankton and detritus. The results cast a new light on coral microbiomes as they indicate that a portion of the CWC's bacterial community could represent a food influenced microbiome.  相似文献   
22.
Microbial-driven organic matter (OM) degradation is a cornerstone of benthic community functioning, but little is known about the relation between OM and community composition. Here we use Rhône prodelta sediments to test the hypothesis that OM quality and source are fundamental structuring factors for bacterial communities in benthic environments. Sampling was performed on four occasions corresponding to contrasting river-flow regimes, and bacterial communities from seven different depths were analyzed by pyrosequencing of 16S rRNA gene amplicons. The sediment matrix was characterized using over 20 environmental variables including bulk parameters (for example, total nitrogen, carbon, OM, porosity and particle size), as well as parameters describing the OM quality and source (for example, pigments, total lipids and amino acids and δ13C), and molecular-level biomarkers like fatty acids. Our results show that the variance of the microbial community was best explained by δ13C values, indicative of the OM source, and the proportion of saturated or polyunsaturated fatty acids, describing OM lability. These parameters were traced back to seasonal differences in the river flow, delivering OM of different quality and origin, and were directly associated with several frequent bacterial operational taxonomic units. However, the contextual parameters, which explained at most 17% of the variance, were not always the key for understanding the community assembly. Co-occurrence and phylogenetic diversity analysis indicated that bacteria–bacteria interactions were also significant. In conclusion, the drivers structuring the microbial community changed with time but remain closely linked with the river OM input.  相似文献   
23.
Foliar and postharvest applications of phosphite (Phi)‐based fungicides are used to control the oomycete Phytophthora infestans which is responsible for the occurrence of late blight in potatoes. Optimisation of the usage of Phi‐based fungicides for disease control during the growing season and in subsequent storage can lead to improved potato production and processing quality. In order to assess the efficiency of Phi translocation to tubers, following foliar and postharvest treatments of potato crops with the Phi‐based fungicides, the amount of Phi in tubers was determined by a high‐performance ion chromatography method. The quantity of Phi found in tubers increased with the total amount of Phi‐based fungicides applied during the growing season. Foliar applications of Phi resulted in an uneven distribution of Phi in the three tuber regions analysed, with high concentrations being identified in the tuber cortex (32.5–166.4 µg g?1 fresh tissue) and medulla regions followed by the skin area. Postharvest treatment of tubers led to a different distribution of Phi, with the highest concentrations of Phi found in the skin (411.0–876.6 µg g?1 fresh tissue) followed by the cortex and medulla regions. As foliar treatments are essential to protect the aerial parts of the plants during the growth season, the best disease management practices of tubers should include the postharvest treatment in addition to foliar applications. The use of both types of treatments ensures that concentrations of Phi in excess of 100 µg g?1 fresh tissue are present in tuber skin and cortex areas; such concentrations are needed to suppress the growth of P. infestans on tubers during storage.  相似文献   
24.
In vitro culture establishment, shoot proliferation, ex vitro rooting and dormancy breaking of the newly rooted plantlets were examined on Saskatoon berry (Amelanchier alnifolia NUTT.) cultivars Northline, Pembina, Smoky and Thiessen. Shoot-tip explants taken from actively growing plants were better for culture initiation than dormant buds. MS gave the most satisfactory results of the media formulations. Optimal shoot proliferation occurred at 8.8 and 13.3 M BA. Higher BA concentrations caused culture deterioration during long-term maintenance. Auxin treatments significantly stimulated ex vitro rooting of shoots in all cultivars. The best rooting was achieved with IAA/NAA (2.8/1.1 M) mixture. Satisfactory results were also obtained with commercial powder formulation, Rootone F, containing IBA/NAA mixture. Foliar application of BA and GA4+7 was successful in breaking dormancy of newly rooted plantlets. Combinations of these two growth regulators caused formation of axillary shoots and vigorous plant growth. There were significant differences in the cultivar responses to culture conditions and treatments with growth regulators. The best culture establishment and the highest rate of shoot proliferation was observed in cv. Thiessen; the best rooting and the most vigorous post-dormancy growth was recorded in cv. Smoky. Cultivar Northland gave the most erratic responses.Abbreviations BA benzyladenine - cv(s) cultivar(s) - GA gibberellin - IAA indoleacetic acid - IBA indolebutyric acid - NAA naphthaleneacetic acid - MS Murashige & Skoog's medium  相似文献   
25.
Experiments supporting the possible role of the free sulfur-containing amino acid thiotaurine, as a transport and storage compound for sulfide in invertebrates with thiotrophic symbionts are described. The free-living chemotrophic sulfur-oxidising bacterium, Thiobacillus hydrothermalis (strain DSMZ 7121), was used as a model for the symbionts as the actual symbionts have not been obtained in culture.Thiotaurine contains two sulfur atoms, namely the inner sulfone and the outer sulfane sulfur; the latter presents a potential source of reducing equivalents for the symbiont. Nevertheless, we observed no oxidation of thiotaurine when this compound was added to a culture of T. hydrothermalis pre-grown on sulfide. In contrast, when thiotaurine was added to the culture together with an extract of the trophosome of a vestimentiferan tubeworm from the Manus basin, we observed that thiotaurine was oxidised to hypotaurine with concomitant acidification and formation of bacterial biomass. Thus, the trophosome contains an unknown catalytic factor. We suggest that thiotaurine requires reduction prior to oxidation by T. hydrothermalisand that the host may catalyse the conversion of thiotaurine through the glutathione redox couple. This way, the host can accurately control energy delivery (as reduced sulfur) to the symbionts and can therefore control their symbiont biomass.  相似文献   
26.
John F. Pruski 《Brittonia》1999,51(3):326-330
The new combinationGurania lobata (Cucurbitaceae) is made forAnguria lobata, an overlooked Linnaean name published in the original edition ofPlantae Surinamenses, andG. spinulosa is treated as synonymous with this species.  相似文献   
27.
28.

Key message

Evaluation of seed protein alleles in soybean populations showed that an increase in protein concentration is generally associated with a decrease in oil concentration and yield.

Abstract

Soybean [Glycine max (L.) Merrill] meal is one of the most important plant-based protein sources in the world. Developing cultivars high in seed protein concentration and seed yield is a difficult task because the traits have an inverse relationship. Over two decades ago, a protein quantitative trait loci (QTL) was mapped on chromosome (chr) 20, and this QTL has been mapped to the same position in several studies and given the confirmed QTL designation cqSeed protein-003. In addition, the wp allele on chr 2, which confers pink flower color, has also been associated with increased protein concentration. The objective of our study was to evaluate the effect of cqSeed protein-003 and the wp locus on seed composition and agronomic traits in elite soybean backgrounds adapted to the Midwestern USA. Segregating populations of isogenic lines were developed to test the wp allele and the chr 20 high protein QTL alleles from Danbaekkong (PI619083) and Glycine soja PI468916 at cqSeed protein-003. An increase in protein concentration and decrease in yield were generally coupled with the high protein alleles at cqSeed protein-003 across populations, whereas the effects of wp on protein concentration and yield were variable. These results not only demonstrate the difficulty in developing cultivars with increased protein and yield but also provide information for breeding programs seeking to improve seed composition and agronomic traits simultaneously.
  相似文献   
29.
CD45, the leukocyte common Ag, has been shown to characterize T cell development both within the thymus and among peripheral T cells. The work reported here demonstrates that human multinegative (MN) thymocytes, depleted of cells bearing CD3, CD4, CD8, and CD19, express predominantly the high molecular mass CD45RA isoform, and lack low molecular mass CD45RB isoforms and CD45R0 as detected by immunofluorescence. By immunoprecipitation of surface-labeled CD45 molecules from MN thymocytes, a proportion of the CD45 is in fact of low molecular mass but does not include epitopes recognized by CD45R0, nor by CD45RB mAb specific for the p190. This suggests either glycosylation variants of CD45RB/CD45R0 undetectable by our mAb, or underglycosylated CD45RA. MN thymocytes lack TCR-alpha beta mRNA confirming their early developmental stage. Upon culture with IL-2 or with mitogenic combinations of anti-CD2/CD28 mAb, MN thymocytes differentiate to acquire CD3, TCR-alpha beta, and in some cases CD4 and/or CD8. We have predicted that maintenance of CD45RA and lack of CD45R0 expression is fundamental to generative thymic development. If correct, this demands that unlike peripheral T cells, differentiation of MN thymocytes should be accompanied by prolonged expression of high molecular mass CD45 isoforms. Analysis of CD45 isoform expression during MN thymocyte development confirms this prediction and indicates that expression of CD45RA is maintained, at increasing density, for at least 8 to 12 days of culture. Unlike peripheral blood T cells, this is accompanied by the gradual acquisition of firstly the p190 isoforms of CD45RB and later by CD45R0, resulting in a population of CD3+TCR-alpha beta cells coexpressing CD45RA/RBp190/R0. Dot blot analysis of mRNA from differentiating MN thymocytes indicates prolonged expression of mRNA encoding CD45 exons a, b, and c, again in contrast to peripheral T cells which lose all mRNA for alternatively spliced CD45 exons within the first 24 h poststimulation. This is discussed in the context of negative selection during thymic development and interconversion of T cell subsets.  相似文献   
30.
Wood falls on the ocean floor form chemosynthetic ecosystems that remain poorly studied compared with features such as hydrothermal vents or whale falls. In particular, the microbes forming the base of this unique ecosystem are not well characterized and the ecology of communities is not known. Here we use wood as a model to study microorganisms that establish and maintain a chemosynthetic ecosystem. We conducted both aquaria and in situ deep-sea experiments to test how different environmental constraints structure the assembly of bacterial, archaeal and fungal communities. We also measured changes in wood lipid concentrations and monitored sulfide production as a way to detect potential microbial activity. We show that wood falls are dynamic ecosystems with high spatial and temporal community turnover, and that the patterns of microbial colonization change depending on the scale of observation. The most illustrative example was the difference observed between pine and oak wood community dynamics. In pine, communities changed spatially, with strong differences in community composition between wood microhabitats, whereas in oak, communities changed more significantly with time of incubation. Changes in community assembly were reflected by changes in phylogenetic diversity that could be interpreted as shifts between assemblies ruled by species sorting to assemblies structured by competitive exclusion. These ecological interactions followed the dynamics of the potential microbial metabolisms accompanying wood degradation in the sea. Our work showed that wood is a good model for creating and manipulating chemosynthetic ecosystems in the laboratory, and attracting not only typical chemosynthetic microbes but also emblematic macrofaunal species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号