首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2616篇
  免费   179篇
  2795篇
  2023年   9篇
  2022年   19篇
  2021年   33篇
  2020年   27篇
  2019年   27篇
  2018年   50篇
  2017年   47篇
  2016年   75篇
  2015年   106篇
  2014年   121篇
  2013年   193篇
  2012年   198篇
  2011年   179篇
  2010年   140篇
  2009年   132篇
  2008年   174篇
  2007年   162篇
  2006年   163篇
  2005年   126篇
  2004年   153篇
  2003年   118篇
  2002年   119篇
  2001年   18篇
  2000年   13篇
  1999年   31篇
  1998年   28篇
  1997年   22篇
  1996年   19篇
  1995年   30篇
  1994年   19篇
  1993年   23篇
  1992年   20篇
  1991年   17篇
  1990年   25篇
  1989年   16篇
  1988年   10篇
  1987年   5篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   8篇
  1982年   11篇
  1981年   16篇
  1980年   8篇
  1979年   6篇
  1978年   12篇
  1977年   7篇
  1976年   8篇
  1974年   14篇
  1973年   5篇
排序方式: 共有2795条查询结果,搜索用时 15 毫秒
911.
Ciapponi L  Cenci G  Gatti M 《Genetics》2006,173(3):1447-1454
The Mre11/Rad50/Nbs (MRN) complex and the two protein kinases ATM and ATR play critical roles in the response to DNA damage and telomere maintenance in mammalian systems. It has been previously shown that mutations in the Drosophila mre11 and rad50 genes cause both telomere fusion and chromosome breakage. Here, we have analyzed the role of the Drosophila nbs gene in telomere protection and the maintenance of chromosome integrity. Larval brain cells of nbs mutants display telomeric associations (TAs) but the frequency of these TAs is lower than in either mre11 or rad50 mutants. Consistently, Rad50 accumulates in the nuclei of wild-type cells but not in those of nbs cells, indicating that Nbs mediates transport of the Mre11/Rad50 complex in the nucleus. Moreover, epistasis analysis revealed that rad50 nbs, tefu (ATM) nbs, and mei-41 (ATR) nbs double mutants have significantly higher frequencies of TAs than either of the corresponding single mutants. This suggests that Nbs and the Mre11/Rad50 complex play partially independent roles in telomere protection and that Nbs functions in both ATR- and ATM-controlled telomere protection pathways. In contrast, analysis of chromosome breakage indicated that the three components of the MRN complex function in a single pathway for the repair of the DNA damage leading to chromosome aberrations.  相似文献   
912.
The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae – the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.  相似文献   
913.
Nitrite reductase (cd1NIR) from Pseudomonas aeruginosa, which catalyses the reduction of nitrite to nitric oxide (NO), contains a c-heme as the electron acceptor and a d1-heme where catalysis occurs. Reduction involves binding of nitrite to the reduced d1-heme, followed by dehydration to yield NO; release of NO and re-reduction of the enzyme close the cycle. Since NO is a powerful inhibitor of ferrous hemeproteins, enzymatic turnover demands the release of NO. We recently discovered that NO dissociation from the ferrous d1-heme is fast, showing that cd1NIR behaves differently from other hemeproteins. Here we demonstrate for the first time that the physiological substrate nitrite displaces NO from the ferrous enzyme, which enters a new catalytic cycle; this reaction depends on the conserved His369 whose role in substrate stabilization is crucial for catalysis. Thus we suggest that also in vivo the activity of cd1NIR is controlled by nitrite.  相似文献   
914.
Palaeoenvironmental information on Marine Isotope Stage 3 (MIS 3) coastal Latium is sparse, mainly based on studies of isolated faunal assemblages or long pollen records from lake sediments, often of insufficient resolution to aid in palaeoenvironmental reconstruction. This study describes in detail the Late Pleistocene faunal assemblage from layers SU11 and SU12 of Cava Muracci (Cisterna di Latina, central Italy), the first of which is a partially-preserved hyena den. The first multi-disciplinary palaeoenvironmental reconstruction of coastal Latium between 34–44 ka BP, a critical time span for the presence of the latest Neanderthals and the arrival of Anatomically Modern Humans (AMH), is provided combining palaeoecological inferences from a previous pollen study of hyena coprolites with the palaeontological study described here. The results indicate a temperate climate and a landscape characterised by the coexistence of at least three habitats within a short distance between the coastline and the inland mountains, suitable for a wide variety of species.  相似文献   
915.
916.
The complex etiology of Alzheimer's disease (AD) prompts scientists to develop multifunctional compounds to combat causes and symptoms of such neurodegeneration. To this aim we designed, synthesized, and tested a series of compounds by introducing halophenylalkylamidic functions on the scaffold of AP2238, which is a dual binding site acetylcholinesterase inhibitor. The inhibitory activity was successfully extended to the beta-site amyloid precursor protein cleavage enzyme, leading to the discovery of a potent inhibitor of this enzyme (3) and affording multifunctional compounds (2, 6, 8) for the treatment of AD.  相似文献   
917.
The production of reactive oxygen species (ROS) in mammalian cells is tightly regulated because of their potential to damage macromolecules, including DNA. To investigate possible links between high ROS levels, oxidative DNA damage, and genomic instability in mammalian cells, we established a novel model of chronic oxidative stress by coexpressing the NADPH oxidase human (h) NOX1 gene together with its cofactors NOXO1 and NOXA1. Transfectants of mismatch repair (MMR)-proficient HeLa cells or MMR-defective Msh2(-/-) mouse embryo fibroblasts overexpressing the hNOX1 complex displayed increased intracellular ROS levels. In one HeLa clone in which ROS were particularly elevated, reactive nitrogen species were also increased and nitrated proteins were identified with an anti-3-nitrotyrosine antibody. Overexpression of the hNOX1 complex increased the steady-state levels of DNA 8-oxo-7,8-dihydroguanine and caused a threefold increase in the HPRT mutation rate in HeLa cells. In contrast, additional oxidatively generated damage did not affect the constitutive mutator phenotype of the Msh2(-/-) fibroblasts. Because no significant changes in the expression of several DNA repair enzymes for oxidative DNA damage were identified, we suggest that chronic oxidative stress can saturate the cell's DNA repair capacity and cause significant genomic instability.  相似文献   
918.
Chondrocyte proliferation is important for skeletal development and growth, but the mechanisms regulating it are not completely clear. Previously, we showed that syndecan-3, a cell surface heparan sulfate proteoglycan, is expressed by proliferating chondrocytes in vivo and that proliferation of cultured chondrocytes in vitro is sensitive to heparitinase treatment. To further establish the link between syndecan-3 and chondrocyte proliferation, additional studies were carried out in vivo and in vitro. We found that the topographical location of proliferating chondrocytes in developing chick long bones changes with increasing embryonic age and that syndecan-3 gene expression changes in a comparable manner. For in vitro analysis, mitotically quiescent chondrocytes were exposed to increasing amounts of fibroblast growth factor-2 (FGF-2). Proliferation was stimulated by as much as 8-10-fold within 24 h; strikingly, this stimulation was significantly prevented when the cells were treated with both fibroblast growth factor-2 (FGF-2) and antibodies against syndecan-3 core protein. This neutralizing effect was dose-dependent and elicited a maximum of 50-60% inhibition. To establish specificity of neutralizing effect, cultured chondrocytes were exposed to FGF-2, insulin-like growth factor-1, or parathyroid hormone, all known mitogens for chondrocytes. The syndecan-3 antibodies interfered only with FGF-2 mitogenic action, but not that of insulin-like growth factor-1 or parathyroid hormone. Protein cross-linking experiments indicated that syndecan-3 is present in monomeric, dimeric, and oligomeric forms on the chondrocyte surface. In addition, molecular modeling indicated that contiguous syndecan-3 molecules might form stable complexes by parallel pairing of beta-sheet segments within the ectodomain of the core protein. In conclusion, the results suggest that syndecan-3 is a direct and selective regulator of the mitotic behavior of chondrocytes and its role may involve formation of dimeric/oligomeric structures on their cell surface.  相似文献   
919.
Stoichiometry, stability constants and solution structures of the copper(II) complexes of the N-acetylated tetrapeptide HisGlyHisGly were determined in aqueous solution in the pH range 2-11. The potentiometric and spectroscopic data (UV-Vis, CD, EPR and Raman scattering) show that acetylation of the amino terminal group induces drastic changes in the coordination properties of AcHGHG compared to HGHG. The N3 atoms of the histidine side chains are the first anchoring sites of the copper(II) ion. At pH 4.7 and 5.6 both the imidazole rings cooperate in the formation of a 2N equatorial set, while, at higher pH values, 3N and 4N complexes are formed through the coordination of peptide N- atoms. The logbeta values of the copper complexes of AcHGHG are by far lower than those of the corresponding species in the parent CuII-HGHG system.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号