全文获取类型
收费全文 | 3772篇 |
免费 | 203篇 |
专业分类
3975篇 |
出版年
2024年 | 15篇 |
2023年 | 27篇 |
2022年 | 67篇 |
2021年 | 121篇 |
2020年 | 69篇 |
2019年 | 87篇 |
2018年 | 88篇 |
2017年 | 78篇 |
2016年 | 159篇 |
2015年 | 209篇 |
2014年 | 218篇 |
2013年 | 307篇 |
2012年 | 308篇 |
2011年 | 309篇 |
2010年 | 187篇 |
2009年 | 146篇 |
2008年 | 242篇 |
2007年 | 230篇 |
2006年 | 244篇 |
2005年 | 177篇 |
2004年 | 169篇 |
2003年 | 132篇 |
2002年 | 111篇 |
2001年 | 32篇 |
2000年 | 26篇 |
1999年 | 21篇 |
1998年 | 26篇 |
1997年 | 21篇 |
1996年 | 14篇 |
1995年 | 19篇 |
1994年 | 18篇 |
1993年 | 16篇 |
1992年 | 8篇 |
1991年 | 17篇 |
1990年 | 11篇 |
1989年 | 9篇 |
1988年 | 9篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1983年 | 2篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1975年 | 2篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1933年 | 2篇 |
1926年 | 1篇 |
1910年 | 2篇 |
排序方式: 共有3975条查询结果,搜索用时 15 毫秒
181.
182.
Gamma-adaptin, a novel ubiquitin-interacting adaptor, and Nedd4 ubiquitin ligase control hepatitis B virus maturation 总被引:4,自引:0,他引:4
Rost M Mann S Lambert C Döring T Thomé N Prange R 《The Journal of biological chemistry》2006,281(39):29297-29308
Hepatitis B virus (HBV) budding from infected cells is a tightly regulated process that requires both core and envelope structures. Here we report that HBV uses cellular gamma2-adaptin and Nedd4, possibly in conjunction with ubiquitin, to coordinate its assembly and release. In search of interaction partners of the viral L envelope protein, we previously discovered gamma2-adaptin, a putative endosomal sorting and trafficking adaptor of the adaptor protein complex family. We now demonstrate that the viral core interacts with the same gamma2-adaptor and that disruption of the HBV/gamma2-adaptin interactions inhibits virus production. Mutational analyses revealed a hitherto unknown ubiquitin-binding activity of gamma2-adaptin, specified by a ubiquitin-interacting motif, which contributes to its interaction with core. For core, the lysine residue at position 96, a potential target for ubiquitination, was identified to be essential for both gamma2-adaptin-recognition and virus production. The participation of the cellular ubiquitin system in HBV assembly was further suggested by our finding that core interacts with the endosomal ubiquitin ligase Nedd4, partly via its late domain-like PPAY sequence. Overexpression of a catalytically inactive Nedd4 mutant diminished HBV egress, indicating that protein ubiquitination is functionally involved in virus production. Additional evidence for a link of HBV assembly to the endosomal machinery was provided by immunolabeling studies that demonstrated colocalization of core and L with gamma2-adaptin in compartments positive for the late endosomal marker CD63. Together, these data indicate that an enveloped DNA virus exploits a new ubiquitin receptor together with endosomal pathway functions for egress from hepatocytes. 相似文献
183.
T Ravingerová S Carnická M Nemčeková V Ledvényiová A Adameová T Kelly E Barlaka E Galatou VK Khandelwal A Lazou 《Canadian journal of physiology and pharmacology》2012,90(8):1135-1144
Peroxisome proliferator-activated receptors (PPAR) regulate the expression of genes involved in lipid metabolism, energy production, and inflammation. Their role in ischaemia-reperfusion (I/R) is less clear, although research indicates involvement of PPARs in some forms of preconditioning. This study aimed to explore the effects of PPAR-α activation on the I/R injury and potential cardioprotective downstream mechanisms involved. Langendorff-perfused hearts of rats pretreated with the selective PPAR-α agonist WY-14643 (WY, pirinixic acid; 3 mg·(kg body mass)·day(-1); 5 days) were subjected to 30 min ischaemia - 2 h reperfusion with or without the phosphatidylinositol 3-kinase (PI3K)-Akt inhibitor wortmannin for the evaluation of functional (left ventricular developed pressure, LVDP) recovery, infarct size (IS), and reperfusion-induced arrhythmias. A 2-fold increase in baseline PPAR-α mRNA levels (qPCR) in the WY-treated group and higher post-I/R PPAR-α levels compared with those in untreated controls were accompanied by similar changes in the expression of PPAR-α target genes PDK4 and mCPT-1, regulating glucose and fatty acid metabolism, and by enhanced Akt phosphorylation. Post-ischaemic LVDP restoration in WY-treated hearts reached 60% ± 9% of the pre-ischaemic values compared with 24% ± 3% in the control hearts (P < 0.05), coupled with reduced IS and incidence of ventricular fibrillation that was blunted by wortmannin. Results indicate that PPAR-α up-regulation may confer preconditioning-like protection via metabolic effects. Downstream mechanisms of PPAR-α-mediated cardioprotection may involve PI3K-Akt activation. 相似文献
184.
Croasdale R Wartha K Schanzer JM Kuenkele KP Ries C Mayer K Gassner C Wagner M Dimoudis N Herter S Jaeger C Ferrara C Hoffmann E Kling L Lau W Staack RF Heinrich J Scheuer W Stracke J Gerdes C Brinkmann U Umana P Klein C 《Archives of biochemistry and biophysics》2012,526(2):206-218
In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy. 相似文献
185.
Martina Bielaszewska Christian Rüter Lisa Kunsmann Lilo Greune Andreas Bauwens Wenlan Zhang Thorsten Kuczius Kwang Sik Kim Alexander Mellmann M. Alexander Schmidt Helge Karch 《PLoS pathogens》2013,9(12)
Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in order to target mitochondria. 相似文献
186.
187.
188.
Brüning M Lummer M Bentele C Smolenaars MM Rodenburg KW Ragg H 《The Biochemical journal》2007,401(1):325-331
By alternative use of four RSL (reactive site loop) coding exon cassettes, the serpin (serine protease inhibitor) gene Spn4 from Drosophila melanogaster was proposed to enable the synthesis of multiple protease inhibitor isoforms, one of which has been shown to be a potent inhibitor of human furin. Here, we have investigated the inhibitory spectrum of all Spn4 RSL variants. The analyses indicate that the Spn4 gene encodes inhibitors that may inhibit serine proteases of the subtilase family (S8), the chymotrypsin family (S1), and the papain-like cysteine protease family (C1), most of them at high rates. Thus a cohort of different protease inhibitors is generated simply by grafting enzyme-adapted RSL sequences on to a single serpin scaffold, even though the target proteases contain different types and/or a varying order of catalytic residues and are descendents of different phylogenetic lineages. Since all of the Spn4 RSL isoforms are produced as intracellular residents and additionally as variants destined for export or associated with the secretory pathway, the Spn4 gene represents a versatile defence tool kit that may provide multiple antiproteolytic functions. 相似文献
189.
Gagiannis D Orthmann A Danssmann I Schwarzkopf M Weidemann W Horstkorte R 《Glycoconjugate journal》2007,24(2-3):125-130
Sialic acids are widely expressed as terminal carbohydrates on glycoconjugates of eukaryotic cells. They are involved in a variety of cellular functions, such as cell adhesion or signal recognition. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), which catalyzes the first two steps of sialic acid biosynthesis in the cytosol. Previously, we have shown that inactivation of the GNE by gene targeting causes early embryonic lethality in mice, whereas heterozygous GNE-deficient mice are vital. In this study we compared the amount of membrane-bound sialic acids of wildtype mice with those of heterozygous GNE-deficient mice. For that we quantified membrane-bound sialic acid concentration in various organs of wildtype- and heterozygous GNE-deficient mice. We found an organ-specific reduction of membrane-bound sialic acids in heterozygous GNE-deficient mice. The overall reduction was 25%. Additionally, we analyzed transferrin and polysialylated neural cell adhesion molecule (NCAM) by one- or two-dimensional gel electrophoresis. Transferrin-expression was unchanged in heterozygous GNE-deficient mice; however the isoelectric point of transferrin was shifted towards basic pH, indicating a reduced sialylation. Furthermore, the expression of polysialic acids on NCAM was reduced in GNE-deficient mice. Daniel Gagiannis and André Orthmann have contributed equally to this work. 相似文献
190.
Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking 总被引:10,自引:0,他引:10 下载免费PDF全文
Metzler M Li B Gan L Georgiou J Gutekunst CA Wang Y Torre E Devon RS Oh R Legendre-Guillemin V Rich M Alvarez C Gertsenstein M McPherson PS Nagy A Wang YT Roder JC Raymond LA Hayden MR 《The EMBO journal》2003,22(13):3254-3266
Huntingtin interacting protein 1 (HIP1) is a recently identified component of clathrin-coated vesicles that plays a role in clathrin-mediated endocytosis. To explore the normal function of HIP1 in vivo, we created mice with targeted mutation in the HIP1 gene (HIP1(-/-)). HIP1(-/-) mice develop a neurological phenotype by 3 months of age manifest with a failure to thrive, tremor and a gait ataxia secondary to a rigid thoracolumbar kyphosis accompanied by decreased assembly of endocytic protein complexes on liposomal membranes. In primary hippocampal neurons, HIP1 colocalizes with GluR1-containing AMPA receptors and becomes concentrated in cell bodies following AMPA stimulation. Moreover, a profound dose-dependent defect in clathrin-mediated internalization of GluR1-containing AMPA receptors was observed in neurons from HIP1(-/-) mice. Together, these data provide strong evidence that HIP1 regulates AMPA receptor trafficking in the central nervous system through its function in clathrin-mediated endocytosis. 相似文献