首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   8篇
  2014年   5篇
  2013年   8篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2005年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1977年   2篇
  1958年   1篇
  1951年   4篇
  1945年   1篇
  1943年   1篇
  1929年   1篇
  1928年   1篇
  1927年   2篇
  1925年   2篇
  1922年   1篇
  1921年   1篇
  1920年   2篇
  1917年   2篇
  1916年   1篇
  1915年   1篇
  1914年   2篇
  1912年   3篇
  1911年   7篇
  1910年   2篇
  1909年   4篇
  1908年   5篇
  1907年   3篇
  1906年   4篇
  1905年   3篇
  1903年   1篇
  1902年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
71.

Introduction

The protein platform called the NOD-like-receptor -family member (NLRP)-3 inflammasome needs to be activated to process intracellular caspase-1. Active caspase-1 is able to cleave pro-Interleukin (IL)-1β, resulting in bioactive IL-1β. IL-1β is a potent proinflammatory cytokine, and thought to play a key role in the pathogenesis of Lyme arthritis, a common manifestation of Borrelia burgdorferi infection. The precise pathways through which B. burgdorferi recognition leads to inflammasome activation and processing of IL-1β in Lyme arthritis has not been elucidated. In the present study, we investigated the contribution of several pattern recognition receptors and inflammasome components in a novel murine model of Lyme arthritis.

Methods

Lyme arthritis was elicited by live B. burgdorferi, injected intra-articularly in knee joints of mice. To identify the relevant pathway components, the model was applied to wild-type, NLRP3-/-, ASC-/-, caspase-1-/-, NOD1-/-, NOD2-/-, and RICK-/- mice. As a control, TLR2-/-, Myd88-/- and IL-1R-/- mice were used. Peritoneal macrophages and bone marrow-derived macrophages were used for in vitro cytokine production and inflammasome activation studies. Joint inflammation was analyzed in synovial specimens and whole knee joints. Mann-Whitney U tests were used to detect statistical differences.

Results

We demonstrate that ASC/caspase-1-driven IL-1β is crucial for induction of B. burgdorferi-induced murine Lyme arthritis. In addition, we show that B. burgdorferi-induced murine Lyme arthritis is less dependent on NOD1/NOD2/RICK pathways while the TLR2-MyD88 pathway is crucial.

Conclusions

Murine Lyme arthritis is strongly dependent on IL-1 production, and B. burgdorferi induces inflammasome-mediated caspase-1 activation. Next to that, murine Lyme arthritis is ASC- and caspase-1-dependent, but NLRP3, NOD1, NOD2, and RICK independent. Also, caspase-1 activation by B. burgdorferi is dependent on TLR2 and MyD88. Based on present results indicating that IL-1 is one of the major mediators in Lyme arthritis, there is a rationale to propose that neutralizing IL-1 activity may also have beneficial effects in chronic Lyme arthritis.  相似文献   
72.
73.
74.
Abscisic acid (ABA) is required for the regulation of seed maturation in maize (Zea mays L.). Mutants blocked in ABA synthesis (such as viviparous-5) do not mature to quiescent, desiccation-tolerant seeds, but germinate on the ear midway through kernel development. Because gibberellins (GA) and ABA act antagonistically in many aspects of plant development, we hypothesized that ABA antagonizes a positive GA signal for precocious germination in maize. In these experiments, we show that a GA deficiency early in seed development, induced genetically or via biosynthesis inhibitors, suppresses vivipary in ABA-deficient developing kernels. The resulting seeds have both desiccation tolerance and storage longevity. Temporal analysis of GA accumulation in wild-type kernels revealed the accumulation of bioactive GA(1) and GA(3) prior to the peak in ABA content. We speculate that these GAs stimulate a developmental program leading to vivipary in the absence of normal amounts of ABA, and that a reduction of GA content re-establishes an ABA/GA ratio appropriate for suppression of germination and induction of maturation. In contrast, the induction of a GA deficiency did not suppress vivipary in viviparous-1 mutant kernels, suggesting that VP1 acts downstream of both GA and ABA in programming seed development.  相似文献   
75.
Jasmonates, potent lipid mediators of defense gene expression in plants, are rapidly synthesized in response to wounding. These lipid mediators also stimulate their own production via a positive feedback circuit, which depends on both JA synthesis and JA signaling. To date, molecular components regulating the activation of jasmonate biogenesis and its feedback loop have been poorly characterized. We employed a genetic screen capable of detecting the misregulated activity of 13-lipoxygenase, which operates at the entry point of the jasmonate biosynthesis pathway. Leaf extracts from the Arabidopsis fou2 (fatty acid oxygenation upregulated 2) mutant displayed an increased capacity to catalyze the synthesis of lipoxygenase (LOX) metabolites. Quantitative oxylipin analysis identified less than twofold increased jasmonate levels in healthy fou2 leaves compared to wild-type; however, wounded fou2 leaves strongly increased jasmonate biogenesis compared to wounded wild-type. Furthermore, the plants displayed enhanced resistance to the fungus Botrytis cinerea. Higher than wild-type LOX activity and enhanced resistance in the fou2 mutant depend fully on a functional jasmonate response pathway. The fou2 mutant carries a missense mutation in the putative voltage sensor of the Two Pore Channel 1 gene (TPC1), which encodes a Ca(2+)-permeant non-selective cation channel. Patch-clamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. The results indicate that cation fluxes exert strong control over the positive feedback loop whereby JA stimulates its own synthesis.  相似文献   
76.

Background

The hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis show how mitochondria can evolve into hydrogenosomes because they possess a mitochondrial genome and parts of an electron-transport chain on the one hand, and a hydrogenase on the other hand. The hydrogenase permits direct reoxidation of NADH because it consists of a [FeFe] hydrogenase module that is fused to two modules, which are homologous to the 24 kDa and the 51 kDa subunits of a mitochondrial complex I.

Results

The [FeFe] hydrogenase belongs to a clade of hydrogenases that are different from well-known eukaryotic hydrogenases. The 24 kDa and the 51 kDa modules are most closely related to homologous modules that function in bacterial [NiFe] hydrogenases. Paralogous, mitochondrial 24 kDa and 51 kDa modules function in the mitochondrial complex I in N. ovalis. The different hydrogenase modules have been fused to form a polyprotein that is targeted into the hydrogenosome.

Conclusion

The hydrogenase and their associated modules have most likely been acquired by independent lateral gene transfer from different sources. This scenario for a concerted lateral gene transfer is in agreement with the evolution of the hydrogenosome from a genuine ciliate mitochondrion by evolutionary tinkering.  相似文献   
77.
78.
79.
Examination of 18 complete and 6 partial sequences of the major outer- membrane protein from 24 chlamydiae isolates was used to reconstruct their evolutionary relationships. From this analysis, assuming that the clades with 100% bootstrap support are correct, come the following conclusions: (1) The tree of these sequences is not congruent with the phylogeny of the hosts, and thus host switching would seem to have occurred, thereby limiting the extent to which there has been coevolution of parasite and host. (2) The tree is also noncongruent with clustering by type of cell infected, thereby limiting the extent to which there has been coevolution of parasite and the cell type that it infects. (3) The tree is also noncongruent with clustering by the organ infected (eyes or genitalia), thereby limiting the extent to which there has been coevolution of parasite and the organ that it infects. (4) The tree is also noncongruent with genital strains arising from lymphogranuloma venereum strains. (5) The tree is also noncongruent with the geographic site at which the isolates were obtained, thereby limiting the extent of divergence explained by geographic separation. (6) There are estimated to be 185 amino acid positions that are invariable (as opposed to unvaried) in the major outer-membrane protein. There are 10 unvaried positions in the variable domains, of which 9 appear to be invariable, giving some reason to hope that development of a vaccine might be possible. (7) The rate of change of this protein is too small to see increased divergence over the time span of isolation of these genes, giving hope to any vaccine having longevity. Bootstrapping supports those portions of the tree on which the first five conclusions above depend. The picture that these results provide is more one of pathogen versatility than one of coevolutionary constraints. In addition, we examined 10 60-KDa, outer-membrane protein- 2 genes, all but one of which were from these same strains. The tree was not, among the trachomatis strains, congruent with the major-outer- membrane protein tree, suggesting that gene exchange could be occurring among strains. Moreover, there is an apparent slowdown in divergence in this gene, among the trachomatis strains.   相似文献   
80.
Cervicovaginal fluid has an important function in the homeostasis and immunity of the lower female genital tract. Analysis of the cervicovaginal fluid proteome may therefore yield important information about the pathogenesis of numerous gynecological pathologies. Additionally, cervicovaginal fluid has great potential as a source of biomarkers for these conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号