首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   37篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   6篇
  2018年   6篇
  2017年   8篇
  2016年   5篇
  2015年   15篇
  2014年   12篇
  2013年   22篇
  2012年   14篇
  2011年   18篇
  2010年   15篇
  2009年   16篇
  2008年   8篇
  2007年   16篇
  2006年   11篇
  2005年   11篇
  2004年   14篇
  2003年   13篇
  2002年   10篇
  2001年   10篇
  2000年   8篇
  1999年   13篇
  1998年   13篇
  1997年   7篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1983年   6篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1975年   6篇
  1974年   6篇
  1973年   7篇
  1972年   5篇
  1971年   5篇
  1966年   2篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
61.
62.
A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.  相似文献   
63.
A recent (2007 to 2009) dengue outbreak caused by dengue virus (DENV) in Paraguay presented unusual severe clinical outcomes associated with 50% mortality rates. Although it has been reported that inflammatory responses influence the severity of dengue virus infection (T. Pang, M. J. Cardosa, and M. G. Guzman, Immunol. Cell Biol. 85:43-45, 2007), there remains a paucity of information on virus-innate immunity interactions influencing clinical outcome. Using human dendritic cells from a major innate immune cell population as an in vitro model, we have investigated signature cytokine responses as well as infectivity-replicative profiles of DENV clinical isolates from either a nonfatal case of classical dengue fever (strain DENV3/290; isolated in Brazil in 2002) or a fatal case of dengue fever with visceral complications isolated in Paraguay in 2007 (strain DENV3/5532). Strain DENV3/5532 was found to display significantly higher replicative ability than DENV3/290 in monocyte-derived dendritic cells (mdDCs). In addition, compared to DENV3/290 results, mdDCs exposed to DENV3/5532 showed increased production of proinflammatory cytokines associated with higher rates of programmed cell death, as shown by annexin V staining. The observed phenotype was due to viral replication, and tumor necrosis factor alpha (TNF-α) appears to exert a protective effect on virus-induced mdDC apoptosis. These results suggest that the DENV3/5532 strain isolated from the fatal case replicates within human dendritic cells, modulating cell survival and synthesis of inflammatory mediators.  相似文献   
64.

Background

Effective mating between laboratory-reared males and wild females is paramount to the success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically modified male mosquitoes. However mosquito colonization and laboratory maintenance have the potential to negatively affect male genotypic and phenotypic quality through inbreeding and selection, which in turn can decrease male mating competitiveness in the field. To date, very little is known about the impact of those evolutionary forces on the reproductive biology of mosquito colonies and how they ultimately affect male reproductive fitness.

Methods

Here several male reproductive physiological traits likely to be affected by inbreeding and selection following colonization and laboratory rearing were examined. Sperm length, and accessory gland and testes size were compared in male progeny from field-collected females and laboratory strains of Anopheles gambiae sensu stricto colonized from one to over 25 years ago. These traits were also compared in the parental and sequentially derived, genetically modified strains produced using a two-phase genetic transformation system. Finally, genetic crosses were performed between strains in order to distinguish the effects of inbreeding and selection on reproductive traits.

Results

Sperm length was found to steadily decrease with the age of mosquito colonies but was recovered in refreshed strains and crosses between inbred strains therefore incriminating inbreeding costs. In contrast, testes size progressively increased with colony age, whilst accessory gland size quickly decreased in males from colonies of all ages. The lack of heterosis in response to crossing and strain refreshing in the latter two reproductive traits suggests selection for insectary conditions.

Conclusions

These results show that inbreeding and selection differentially affect reproductive traits in laboratory strains overtime and that heterotic ‘supermales’ could be used to rescue some male reproductive characteristics. Further experiments are needed to establish the exact relationship between sperm length, accessory gland and testes size, and male reproductive success in the laboratory and field settings.  相似文献   
65.
66.
67.
Cyclopentyl methyl ether (CPME) was evaluated for extracting oil or triacylglycerol (TAG) from wet cells of the oleaginous yeast Lipomyces starkeyi. CPME is a greener alternative to chloroform as a potential solvent for oil recovery. A monophasic system of CPME and biphasic system of CPME:water (1:0.7) performed poorly having the lowest TAG extraction efficiency and TAG selectivity compared to other monophasic systems of hexane and chloroform and the biphasic Bligh and Dyer method (chloroform:methanol:water). Biphasic systems of CPME:water:alcohol (methanol/ethanol/1‐propanol) were tested and methanol achieved the best oil extraction efficiency compared to ethanol and 1‐propanol. Different biphasic systems of CPME:methanol:water were tested, the best TAG extraction efficiency and TAG selectivity achieved was 9.9 mg/mL and 64.6%, respectively, using a starting ratio of 1:1.7:0.6 and a final ratio of 1:1:0.8 (CPME:methanol:water). Similar results were achieved for the Bligh and Dyer method (TAG extraction efficiency of 10.2 mg/mL and TAG selectivity of 66.0%) indicating that the biphasic CPME system was comparable. The fatty acid profile remained constant across all the solvent systems tested indicating that choice of solvent was not specific for any certain fatty acid. This study was able to demonstrate that CPME could be used as an alternative solvent for the extraction of oil from the wet biomass of oleaginous yeast. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1096–1103, 2017  相似文献   
68.
69.
In this protocol the fabrication, experimental setup and basic operation of the recently introduced microfluidic picoliter bioreactor (PLBR) is described in detail. The PLBR can be utilized for the analysis of single bacteria and microcolonies to investigate biotechnological and microbiological related questions concerning, e.g. cell growth, morphology, stress response, and metabolite or protein production on single-cell level. The device features continuous media flow enabling constant environmental conditions for perturbation studies, but in addition allows fast medium changes as well as oscillating conditions to mimic any desired environmental situation. To fabricate the single use devices, a silicon wafer containing sub micrometer sized SU-8 structures served as the replication mold for rapid polydimethylsiloxane casting. Chips were cut, assembled, connected, and set up onto a high resolution and fully automated microscope suited for time-lapse imaging, a powerful tool for spatio-temporal cell analysis. Here, the biotechnological platform organism Corynebacterium glutamicum was seeded into the PLBR and cell growth and intracellular fluorescence were followed over several hours unraveling time dependent population heterogeneity on single-cell level, not possible with conventional analysis methods such as flow cytometry. Besides insights into device fabrication, furthermore, the preparation of the preculture, loading, trapping of bacteria, and the PLBR cultivation of single cells and colonies is demonstrated. These devices will add a new dimension in microbiological research to analyze time dependent phenomena of single bacteria under tight environmental control. Due to the simple and relatively short fabrication process the technology can be easily adapted at any microfluidics lab and simply tailored towards specific needs.  相似文献   
70.
gamma-Aminobutyric acid (GABA) was applied to the superior cervical ganglion (SCG) of CFY rats in vitro and in vivo, with or without implantation of a hypoglossal nerve, to evaluate the effects of these experimental interventions on the acetylcholine (ACh) system, which mainly serves the synaptic transmission of the preganglionic input. Long-lasting GABA microinfusion into the SCG in vivo apparently resulted in a "functional denervation." This treatment reduced the acetylcholinesterase (AChE; EC 3.1.1.7) activity by 30% (p less than 0.01) and transiently increased the number of nicotinic acetylcholine receptors, but had no significant effect on the choline acetyltransferase (acetyl-coenzyme A:choline-O-acetyltransferase; EC 2.3.1.6) activity, the ACh level, or the number of muscarinic acetylcholine receptors. The relative amounts of the different molecular forms of AChE did not change under these conditions. In vivo GABA application to the SCG with a hypoglossal nerve implanted in the presence of intact preganglionic afferent synapses exerted a significant modulatory effect on the AChE activity and its molecular forms. The "hyperinnervation" of the ganglia led to increases in the AChE activity (to 142.5%, p less than 0.01) and the 16S molecular form (to 200%, p less than 0.01). It is concluded that in vivo GABA microinfusion and GABA treatment in the presence of additional cholinergic synapses has a modulatory effect on the elements of the ACh system in the SCG of CFY rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号