首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2309篇
  免费   102篇
  国内免费   4篇
  2023年   34篇
  2022年   63篇
  2021年   127篇
  2020年   73篇
  2019年   76篇
  2018年   107篇
  2017年   84篇
  2016年   138篇
  2015年   154篇
  2014年   159篇
  2013年   194篇
  2012年   223篇
  2011年   197篇
  2010年   112篇
  2009年   88篇
  2008年   94篇
  2007年   67篇
  2006年   54篇
  2005年   53篇
  2004年   45篇
  2003年   41篇
  2002年   30篇
  2001年   24篇
  2000年   21篇
  1999年   13篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   10篇
  1993年   7篇
  1992年   14篇
  1991年   11篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1986年   6篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
  1973年   2篇
  1972年   6篇
  1971年   2篇
排序方式: 共有2415条查询结果,搜索用时 265 毫秒
111.
112.
Plants experience oxidative stress upon exposure to heavy metals that leads to cellular damage. In addition, plants accumulate metal ions that disturb cellular ionic homeostasis. To minimize the detrimental effects of heavy metal exposure and their accumulation, plants have evolved detoxification mechanisms. Such mechanisms are mainly based on chelation and subcellular compartmentalization. Chelation of heavy metals is a ubiquitous detoxification strategy described in wide variety of plants. A principal class of heavy metal chelator known in plants is phytochelatins (PCs), a family of Cys-rich peptides. PCs are synthesized non-translationally from reduced glutathione (GSH) in a transpeptidation reaction catalyzed by the enzyme phytochelatin synthase (PCS). Therefore, availability of glutathione is very essential for PCs synthesis in plants at least during their exposure to heavy metals. Here, I reviewed on effect of heavy metals exposure to plants and role of GSH and PCs in heavy metal stress tolerance. Further, genetic manipulations of GSH and PCs levels that help plants to ameliorate toxic effects of heavy metals have been presented.  相似文献   
113.
Furanoflavonoids from Pongamia pinnata fruits   总被引:2,自引:0,他引:2  
Yadav PP  Ahmad G  Maurya R 《Phytochemistry》2004,65(4):439-443
Fruits of Pongamia pinnata afforded four new furanoflavonoids, pongapinnol A-D (1-4), and a new coumestan, pongacoumestan (5) along with thirteen known compounds 6-18. Compounds 16 and 17 are isolated for the first time from this plant. The structures of isolated compounds were elucidated on the basis of spectroscopic data interpretation.  相似文献   
114.
Minor histocompatibility (H) Ag disparities result in graft-vs-host disease and chronic solid allograft rejection in MHC-identical donor-recipient combinations. Minor H Ags are self protein-derived peptides presented by MHC class I molecules. Most arise as a consequence of allelic variation in the bound peptide (p) that results in TCR recognizing the p/MHC as foreign. We used a combinational peptide screening approach to identify the immune dominant H2K(b)-restricted epitope defining the mouse H4(b) minor H Ag. H4(b) is a consequence of a P3 threonine to isoleucine change in the MHC-bound peptide derived from epithelial membrane protein-3. This allelic variation also leads to phosphorylation of the H4(b) but not the H4(a) epitope. Further, ex vivo CD8(+) T lymphocytes bind phosphorylated Ag tetramers with high efficiency. Although we document the above process in the minor H Ag system, posttranslational modifications made possible by subtle amino acid changes could also contribute to immunogenicity and immune dominance in tumor immunotherapeutic settings.  相似文献   
115.
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.  相似文献   
116.
A commercial preparation of -amylase, Biotempase, obtained from Biocon India Pvt. Ltd., and crude glucoamylase produced from Aspergillus sp. NA21 were used to hydrolyse tapioca powder, a non-conventional starchy substrate. Among various concentrations of starch (15–35%, dry weight/volume) tried for maximum liquefaction; slurry made with 25% substrate concentration proved optimal. An economical process of liquefaction was carried out using steam under pressure (0.2–0.3 bar, 104–105 °C) to liquefy a 25% slurry in just 45 min, contrary to a slower process carried out at 95 °C in a water bath. For liquefaction of starch a pH of 5.0 proved to be optimum. The dose of Biotempase as prescribed by the supplier could be reduced by 33% achieving the same degree of liquefaction, by addition of CaCl2 to the starch slurry at the concentration of 120 mg/l. The conditions for the saccharification of liquefied starch were optimized to be 60 °C and pH 5.0, producing 90% saccharification in 24 h. Supplementation of divalent ions Ca2+, Mg2+ and Zn2+ in the process of saccharification showed no effect. Finally glucose was found to be the main hydrolysis product in the saccharification of tapioca starch.  相似文献   
117.
118.
The purpose of the present study was to investigate the prognostic significance of DNA ploidy, S-phase fraction and p21 ras oncoprotein expression in patients with colorectal cancer and to correlate these factors with the clinical behavior of the tumors and their response to therapy. Of 79 patients with colorectal cancer 57% (45/79) had early stage disease. Forty-one percent (32/79) had aneuploid tumors while 30% (24/79) of the tumors had a high (>10%) S-phase fraction. p21ras oncoprotein expression was detected in 38% (30/79) of tumors. Patients with aneuploid tumors had a worse prognosis than patients with diploid tumors (p=0.0002). Similarly, patients with high S-phase fraction tumors had a shorter survival than those with low S-phase fraction tumors (p=0.005). No such difference was found between p21 raspositive and p21 ras-negative tumor subgroups. In early stage colorectal cancer, aneuploidy was closely correlated with disease outcome (p=0.029). Early stage patients with diploid tumors who received radiotherapy and chemotherapy had a better prognosis than patients with aneuploid tumors. In conclusion, DNA ploidy is a significant and independent prognostic factor in colorectal cancer. Aneuploidy and genetic alteration of the p21 ras oncoprotein are important in determining the biological aggressiveness of colorectal cancer. Furthermore, DNA ploidy may identify those subgroups of patients with early stage disease who may benefit from more aggressive treatment.  相似文献   
119.
In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles.  相似文献   
120.
Ten isoleucine+valine and three leucine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5 followed by screening of Tn5 derivatives on minimal medium supplemented with modified Holliday pools. Based on intermediate feeding, intermediate accumulation and cross-feeding studies, isoleucine+valine and leucine auxotrophs were designated as ilvB/ilvG, ilvC and ilvD, and leuC/leuD and leuB mutants, respectively. Symbiotic properties of all ilvD mutants with alfalfa plants were similar to those of the parental strain. The ilvB/ilvG and ilvC mutants were Nod-. Inoculation of alfalfa plants with ilvB/ilvG mutant did not result in root hair curling and infection thread formation. The ilvC mutants were capable of curling root hairs but did not induce infection thread formation. All leucine auxotrophs were Nod+ Fix-. Supplementation of leucine to the plant nutrient medium did not restore symbiotic effectiveness to the auxotrophs. Histological studies revealed that the nodules induced by the leucine auxotrophs did not develop fully like those induced by the parental strain. The nodules induced by leuB mutants were structurally more advanced than the leuC/leuD mutant induced nodules. These results indicate that ilvB/ilvG, ilvC and one or two leu genes of S. meliloti may have a role in symbiosis. The position of ilv genes on the chromosomal map of S. meliloti was found to be near ade-15 marker.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号