首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   60篇
  国内免费   2篇
  2023年   15篇
  2022年   26篇
  2021年   54篇
  2020年   25篇
  2019年   34篇
  2018年   53篇
  2017年   33篇
  2016年   62篇
  2015年   79篇
  2014年   73篇
  2013年   94篇
  2012年   99篇
  2011年   109篇
  2010年   47篇
  2009年   45篇
  2008年   74篇
  2007年   48篇
  2006年   43篇
  2005年   26篇
  2004年   27篇
  2003年   25篇
  2002年   17篇
  2001年   19篇
  2000年   6篇
  1999年   10篇
  1998年   2篇
  1997年   4篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   8篇
  1990年   3篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1982年   4篇
  1979年   7篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
排序方式: 共有1239条查询结果,搜索用时 15 毫秒
111.
Curcumin is a natural polyphenolic compound having an antiproliferative property, which recent evidence suggests is due to its ability to induce apoptosis. However, the molecular mechanisms through which curcumin induces apoptosis are not fully understood. Here, we report that the curcumin-induced apoptosis is mediated through the impairment of the ubiquitin-proteasome system. Exposure of curcumin to the mouse neuro 2a cells causes a dose-dependent decrease in proteasome activity and an increase in ubiquitinated proteins. Curcumin exposure also decreases the turnover of the destabilized enhanced green fluorescence protein, a model substrate for proteasome and cellular p53 protein. Like other proteasome inhibitors, curcumin targets proliferative cells more efficiently than differentiated cells and induces apoptosis via mitochondrial pathways. Addition of curcumin to neuro 2a cells induces a rapid decrease in mitochondrial membrane potential and the release of cytochrome c into cytosol, followed by activation of caspase-9 and caspase-3.  相似文献   
112.
Thermodynamic parameters of closing up of guanine-rich thrombin binding element, upon binding to K(+) and Na(+) ions to form quadruplexes and opening up of these quadruplexes upon binding to its complementary strand, were investigated. For this purpose, 15mer deoxynucleotide, d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), labeled with 5'-fluorescein and 3'-tetramethylrhodamine was taken and fluorescence resonance energy transfer was monitored as a function of either metal ions or complementary strand concentrations. Equilibrium association constant obtained from FRET studies demonstrates that K(+) ions bind with higher affinity than the Na(+) ions. The enthalpy changes, DeltaH, obtained from temperature dependence of equilibrium association constant studies revealed that formation of quadruplex upon binding of metal ions is primarily enthalpy driven. Binding studies of complementary strand to the quadruplex suggest that opening of a quadruplex in NaCl buffer in presence of the complementary strand is enthalpic as well as entropic driven and can occur easily, whereas opening of the same quadruplex in KCl buffer suffers from enthalpic barrier. Comparison of overall thermodynamic parameters along with kinetics studies indicates that, although quadruplexes cannot efficiently compete with duplex formation at physiological pH, they delay the association of two strands.  相似文献   
113.
114.
Interaction of a cationic phenazinium dye, phenosafranin (PSF), with the anionic liposomal vesicle/bilayer of dimyristoyl-l-α-phosphatidylglycerol (DMPG) has been demonstrated using steady state and time resolved fluorescence and fluorescence anisotropy techniques. The charge transfer emission spectrum of PSF shows a dramatic modification in terms of fluorescence yield together with an appreciable hypsochromic shift in the lipid environment. The blue shift indicates a lowering in polarity inside the vesicle as compared to that in bulk water. The fluorescence and fluorescence quenching studies and micropolarity determination reveal that the cationic fluorophore has a profound binding interaction with the anionic DMPG membrane. Anisotropy study indicates the imposition of a motional restriction on the probe inside the bilayer. The electrostatic interaction between the cationic dye and the anionic lipid membrane has been argued to be the reason behind all these observations. The results could be useful in analyzing membrane organization and heterogeneity in natural membranes exploiting PSF or alike compounds as fluorescent probes.  相似文献   
115.
Microvascular endothelial cells involved in angiogenesis are exposed to an acidic environment that is not conducive for growth and survival. These cells must exhibit a dynamic intracellular (cytosolic) pH (pHcyt) regulatory mechanism to cope with acidosis, in addition to the ubiquitous Na+/H+ exchanger and HCO3--based H+-transporting systems. We hypothesize that the presence of plasmalemmal vacuolar-type proton ATPases (pmV-ATPases) allows microvascular endothelial cells to better cope with this acidic environment and that pmV-ATPases are required for cell migration. This study indicates that microvascular endothelial cells, which are more migratory than macrovascular endothelial cells, express pmV-ATPases. Spectral imaging microscopy indicates a more alkaline pHcyt at the leading than at the lagging edge of microvascular endothelial cells. Treatment of microvascular endothelial cells with V-ATPase inhibitors decreases the proton fluxes via pmV-ATPases and cell migration. These data suggest that pmV-ATPases are essential for pHcyt regulation and cell migration in microvascular endothelial cells.  相似文献   
116.
Maiti TK  Ghosh KS  Dasgupta S 《Proteins》2006,64(2):355-362
(-)-Epigallocatechin-3-gallate (EGCG), the major constituent of green tea has been reported to prevent many diseases by virtue of its antioxidant properties. The binding of EGCG with human serum albumin (HSA) has been investigated for the first time by using fluorescence, circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, and protein-ligand docking. We observed a quenching of fluorescence of HSA in the presence of EGCG. The binding parameters were determined by a Scatchard plot and the results were found to be consistent with those obtained from a modified Stern-Volmer equation. From the thermodynamic parameters calculated according to the van't Hoff equation, the enthalpy change deltaH degrees and entropy change deltaS degrees were found to be -22.59 and 16.23 J/mol K, respectively. These values suggest that apart from an initial hydrophobic association, the complex is held together by van der Waals interactions and hydrogen bonding. Data obtained by fluorescence spectroscopy, CD, and FTIR experiments along with the docking studies suggest that EGCG binds to residues located in subdomains IIa and IIIa of HSA. Specific interactions are observed with residues Trp 214, Arg 218, Gln 221, Asn 295 and Asp 451. We have also looked at changes in the accessible surface area of the interacting residues on binding EGCG for a better understanding of the interaction.  相似文献   
117.
Formation of neuronal intranuclear inclusions of the disease proteins that are ubiquitinated and often associated with various proteasome components is the major hallmark of the polyglutamine diseases. Curcumin is a polyphenolic compound having anti-inflammatory, anti-tumor, and anti-oxidative properties. Recently, curcumin has been reported to suppress the amyloid-beta accumulation, oxidative damage, and inflammation in the transgenic mice model of Alzheimer's disease. Here, we found that the treatment of curcumin increases the polyglutamine-expanded truncated N-terminal huntingtin (mutant huntingtin) aggregation and mutant huntingtin-dependent cell death. Curcumin also causes rapid proteasomal malfunction in the mutant huntingtin expressing cells in comparison with normal glutamine repeat expressing cells. Finally, we show that N-acetyl cysteine (NAC), a potent antioxidant, reverted the curcumin-induced mutant huntingtin aggregation and proteasomal malfunction in the mutant huntingtin expressing cells. NAC also protects curcumin-induced cell death. Our result suggests that curcumin promotes mutant huntingtin-induced cell death by mimicking proteasomal dysfunction.  相似文献   
118.
Huang K  Maiti NC  Phillips NB  Carey PR  Weiss MA 《Biochemistry》2006,45(34):10278-10293
Systemic amyloidoses, an important class of protein misfolding diseases, are often due to fibrillation of disulfide-cross-linked globular proteins otherwise unrelated in sequence or structure. Although cross-beta assembly is regarded as a universal property of polypeptides, it is not understood how such amyloids accommodate diverse disulfide connectivities. Does amyloidogenicity depend on protein topology? A model is provided by insulin, a two-chain protein containing three disulfide bridges. The importance of chain topology is demonstrated by mini-proinsulin (MP), a single-chain analogue in which the C-terminus of the B chain (residue B30) is tethered to the N-terminus of the A chain (A1). The B30-A1 tether impedes the fiber-specific alpha --> beta transition, leading to slow formation of a structurally nonuniform amorphous precipitate. Conversely, fibrillation is robust to interchange of disulfide bridges. Whereas native insulin exhibits pairings [A6-A11, A7-B7, and A20-B19], metastable isomers with alternative pairings [A6-B7, A7-A11, A20-B19] or [A6-A7, A11-B7, A20-B1] readily undergo fibrillation with essentially identical alpha --> beta transitions. Respective pairing schemes are in each case retained. Isomeric fibrils and the amorphous MP precipitate are each able to seed the fibrillation of wild-type insulin, suggesting a structural correspondence between respective nuclei or modes of assembly. Together, our results demonstrate that effects of polypeptide topology on amyloidogenicity depend on structural context. Although the native structures and stabilities of single-chain insulin analogues are similar to those of wild-type insulin, the interchain tether constrains the extent of conformational distortion at elevated temperature, retards initial non-native aggregation, and is apparently incompatible with the mature structure of an insulin protofilament. We speculate that the general danger of fibrillation has imposed a constraint in protein evolution, selecting for topologies unfavorable to amyloid formation.  相似文献   
119.
Aggregation of the amyloid beta (Abeta) peptide yields both fibrillar precipitates and soluble oligomers, and is associated with Alzheimer's disease (AD). In vitro, Cu(2+) and Zn(2+) strongly bind Abeta and promote its precipitation. However, less is known about their interactions with the soluble oligomers, which are thought to be the major toxic species responsible for AD. Using fluorescence correlation spectroscopy to resolve the various soluble species of Abeta, we show that low concentrations of Cu(2+) (1 microM) and Zn(2+) (4 microM) selectively eliminate the oligomeric population (within approximately 2h), while Mg(2+) displays a similar effect at a higher concentration (60 microM). This uncovers a new aspect of Abeta-metal ion interactions, as precipitation is not substantially altered at these low metal ion concentrations. Our results suggest that physiological concentrations of Cu(2+) and Zn(2+) can critically alter the stability of the toxic Abeta oligomers and can potentially control the course of neurodegeneration.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号