全文获取类型
收费全文 | 1050篇 |
免费 | 64篇 |
国内免费 | 1篇 |
专业分类
1115篇 |
出版年
2023年 | 16篇 |
2022年 | 30篇 |
2021年 | 56篇 |
2020年 | 25篇 |
2019年 | 31篇 |
2018年 | 44篇 |
2017年 | 29篇 |
2016年 | 54篇 |
2015年 | 80篇 |
2014年 | 65篇 |
2013年 | 88篇 |
2012年 | 98篇 |
2011年 | 92篇 |
2010年 | 46篇 |
2009年 | 29篇 |
2008年 | 49篇 |
2007年 | 49篇 |
2006年 | 38篇 |
2005年 | 27篇 |
2004年 | 27篇 |
2003年 | 11篇 |
2002年 | 18篇 |
2001年 | 13篇 |
2000年 | 9篇 |
1999年 | 11篇 |
1998年 | 5篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1993年 | 3篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1990年 | 5篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1987年 | 5篇 |
1986年 | 6篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 4篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1971年 | 3篇 |
1970年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有1115条查询结果,搜索用时 12 毫秒
51.
Tomar A Wang Y Kumar N George S Ceacareanu B Hassid A Chapman KE Aryal AM Waters CM Khurana S 《Molecular biology of the cell》2004,15(11):4807-4817
Temporal and spatial regulation of the actin cytoskeleton is vital for cell migration. Here, we show that an epithelial cell actin-binding protein, villin, plays a crucial role in this process. Overexpression of villin in doxycyline-regulated HeLa cells enhanced cell migration. Villin-induced cell migration was modestly augmented by growth factors. In contrast, tyrosine phosphorylation of villin and villin-induced cell migration was significantly inhibited by the src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) as well as by overexpression of a dominant negative mutant of c-src. These data suggest that phosphorylation of villin by c-src is involved in the actin cytoskeleton remodeling necessary for cell migration. We have previously shown that villin is tyrosine phosphorylated at four major sites. To further investigate the role of tyrosine phosphorylated villin in cell migration, we used phosphorylation site mutants (tyrosine to phenylalanine or tyrosine to glutamic acid) in HeLa cells. We determined that tyrosine phosphorylation at residues 60, 81, and 256 of human villin played an essential role in cell migration as well as in the reorganization of the actin cytoskeleton. Collectively, these studies define how biophysical events such as cell migration are actuated by biochemical signaling pathways involving tyrosine phosphorylation of actin binding proteins, in this case villin. 相似文献
52.
The C-terminus of Hsp70 interacting protein (CHIP) is being considered to be a cellular quality control E3 ubiquitin ligase because of its ability to degrade misfolded proteins in association with heat shock chaperones. The neuroprotective role of CHIP also has been implicated in several familial neurodegenerative diseases including polyglutamine diseases. However, the regulation of the expression of CHIP under different stress conditions and its protective role thereon is unknown. Here we have shown that the mRNA level of CHIP is significantly increased in the cells exposed to oxidative, endoplasmic reticulum and proteasomal stress. CHIP also protected from various stress-induced cell death. Finally, we have demonstrated upregulation of CHIP mRNA levels in the expanded polyglutamine protein expressing cells. Our result suggests that the upregulation of CHIP under various stress environments is an adaptive response of the cells to deal with the excess burden of misfolded protein. 相似文献
53.
Curcumin is a natural polyphenolic compound having an antiproliferative property, which recent evidence suggests is due to its ability to induce apoptosis. However, the molecular mechanisms through which curcumin induces apoptosis are not fully understood. Here, we report that the curcumin-induced apoptosis is mediated through the impairment of the ubiquitin-proteasome system. Exposure of curcumin to the mouse neuro 2a cells causes a dose-dependent decrease in proteasome activity and an increase in ubiquitinated proteins. Curcumin exposure also decreases the turnover of the destabilized enhanced green fluorescence protein, a model substrate for proteasome and cellular p53 protein. Like other proteasome inhibitors, curcumin targets proliferative cells more efficiently than differentiated cells and induces apoptosis via mitochondrial pathways. Addition of curcumin to neuro 2a cells induces a rapid decrease in mitochondrial membrane potential and the release of cytochrome c into cytosol, followed by activation of caspase-9 and caspase-3. 相似文献
54.
Basu U Gyrd-Hansen M Baby SM Lozynska O Krag TO Jensen CJ Frödin M Khurana TS 《FEBS letters》2007,581(22):4153-4158
Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne's muscular dystrophy (DMD) locus. Utrophin is of therapeutic interest since its over-expression can compensate dystrophin's absence. Utrophin is enriched at neuromuscular junctions due to heregulin-mediated utrophin-A promoter activation. We demonstrate that heregulin activated MSK1/2 and phosphorylated histone H3 at serine 10 in cultured C2C12 muscle cells, in an ERK-dependent manner. MSK1/2 inhibition suppressed heregulin-mediated utrophin-A activation. MSK1 over-expression potentiated heregulin-mediated utrophin-A activation and chromatin remodeling at the utrophin-A promoter. These results identify MSK1/2 as key effectors modulating utrophin-A expression as well as identify novel targets for DMD therapy. 相似文献
55.
Wang Y Tomar A George SP Khurana S 《American journal of physiology. Cell physiology》2007,292(5):C1775-C1786
While there is circumstantial evidence to suggest a requirement for phospholipase C-1 (PLC-1) in actin reorganization and cell migration, few studies have examined the direct mechanisms that link regulators of the actin cytoskeleton with this crucial signaling molecule. This study was aimed to examine the role that villin, an epithelial cell-specific actin-binding protein, and its ligand PLC-1 play in migration in intestinal and renal epithelial cell lines that endogenously or ectopically express human villin. Basal as well as epidermal growth factor (EGF)-stimulated cell migration was accompanied by tyrosine phosphorylation of villin and its association with PLC-1. Inhibition of villin phosphorylation prevented villin-PLC-1 complex formation as well as villin-induced cell migration. The absolute requirement for PLC-1 in villin-induced cell migration was demonstrated by measuring cell motility in PLC-1/ cells and by downregulation of endogenous PLC-1. EGF-stimulated direct interaction of villin with the Src homology domain 2 domain of PLC-1 at the plasma membrane was demonstrated in living cells by using fluorescence resonance energy transfer. These results demonstrate that villin provides an important link between the activation of phosphoinositide signal transduction pathway and epithelial cell migration. fluorescence resonance energy transfer; actin 相似文献
56.
Vijay K. Sharma Pradeep K. Jain Satish C. Maheshwari Jitendra P. Khurana 《Journal of plant biochemistry and biotechnology.》1999,8(2):87-92
The polypeptides of etioplast and chloroplast fractions, purified on Percoll discontinuous gradient, were phosphorylated in vitro using (γ-32P)ATP, resolved by SDS-PAGE and autoradiographed. In general, about 15-18 phosphopolypeptides in the range of 14-150 kD were distinctly visible in autoradiograms of both organelle fractions with varying degree of radiolabel incorporation. Although short-term irradiation with red or far-red light did not have any significant effect on phosphorylation status of etioplast polypeptides, in vivo irradiation with 1 h white light, followed by in vitro phosphorylation, decreased phosphorylation of a 116 kD polypeptide and increased the phosphorylation of polypeptides of 38 kD and a doublet around 20 kD. Strikingly, the phosphorylation status of 116 kD etioplast polypeptide was adversely affected by Ca2+ as well, and this phosphopolypeptlde was not distinctly visible in the autoradiogram of the chloroplast fraction proteins. However, in vitro phosphorylation of 98, 57 and 50 kD polypeptides of both etioplast and chloroplast fractions was found to be Ca2+ dependent. Unlike Ca2+, 3′,5′-cyclic AMP down-regulated the phosphorylation of several polypeptides of both etioplasts and chloroplasts, including 98 and 50 kD, and up-regulated the phosphorylation of 32 and 57 kD polypeptides. The significance of these observations on changes in phosphoprotein profile of etioplasts and chloroplasts, as influenced by light, Ca2+ and cyclic nucleotides, has been discussed. 相似文献
57.
Kelkar DS Kumar D Kumar P Balakrishnan L Muthusamy B Yadav AK Shrivastava P Marimuthu A Anand S Sundaram H Kingsbury R Harsha HC Nair B Prasad TS Chauhan DS Katoch K Katoch VM Kumar P Chaerkady R Ramachandran S Dash D Pandey A 《Molecular & cellular proteomics : MCP》2011,10(12):M111.011627
The genome sequencing of H37Rv strain of Mycobacterium tuberculosis was completed in 1998 followed by the whole genome sequencing of a clinical isolate, CDC1551 in 2002. Since then, the genomic sequences of a number of other strains have become available making it one of the better studied pathogenic bacterial species at the genomic level. However, annotation of its genome remains challenging because of high GC content and dissimilarity to other model prokaryotes. To this end, we carried out an in-depth proteogenomic analysis of the M. tuberculosis H37Rv strain using Fourier transform mass spectrometry with high resolution at both MS and tandem MS levels. In all, we identified 3176 proteins from Mycobacterium tuberculosis representing ~80% of its total predicted gene count. In addition to protein database search, we carried out a genome database search, which led to identification of ~250 novel peptides. Based on these novel genome search-specific peptides, we discovered 41 novel protein coding genes in the H37Rv genome. Using peptide evidence and alternative gene prediction tools, we also corrected 79 gene models. Finally, mass spectrometric data from N terminus-derived peptides confirmed 727 existing annotations for translational start sites while correcting those for 33 proteins. We report creation of a high confidence set of protein coding regions in Mycobacterium tuberculosis genome obtained by high resolution tandem mass-spectrometry at both precursor and fragment detection steps for the first time. This proteogenomic approach should be generally applicable to other organisms whose genomes have already been sequenced for obtaining a more accurate catalogue of protein-coding genes. 相似文献
58.
59.
Stability and microbial community structure of a partial nitrifying fixed-film bioreactor in long run 总被引:1,自引:0,他引:1
A partial nitrification system was investigated for 471 days under DO varying concentrations for assessing its stability and population dynamics. Within 130 days of operation at feed DO concentration of 1.0 ± 0.1 mg/L, more than 85% of nitrite was accumulated. Efficiency deteriorated when the feed DO concentration was increased to 4.2 ± 0.3 mg/L. Nitrite accumulation could not be re-established on decreasing feed DO to 1.0 ± 0.1 mg/L. Even at DO concentration of <0.05 mg/L, nitrate production was observed; a condition termed as anoxic nitrification. NOB was detected in the biomass even under this condition by Fluorescence in-situ hybridization (FISH) analysis. Through 16S rRNA gene sequencing a major fraction of unknown bacterial sequences closely resembling haloalkalophilic bacteria of marine origin were detected. The study indicated that these bacterial species might play a role in anoxic nitrification and that NOB could survive extreme low DO condition. 相似文献
60.
Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism 总被引:20,自引:0,他引:20
Nielsen L Khurana R Coats A Frokjaer S Brange J Vyas S Uversky VN Fink AL 《Biochemistry》2001,40(20):6036-6046
In the search for the molecular mechanism of insulin fibrillation, the kinetics of insulin fibril formation were studied under different conditions using the fluorescent dye thioflavin T (ThT). The effect of insulin concentration, agitation, pH, ionic strength, anions, seeding, and addition of 1-anilinonaphthalene-8-sulfonic acid (ANS), urea, TMAO, sucrose, and ThT on the kinetics of fibrillation was investigated. The kinetics of the fibrillation process could be described by the lag time for formation of stable nuclei (nucleation) and the apparent rate constant for the growth of fibrils (elongation). The addition of seeds eliminated the lag phase. An increase in insulin concentration resulted in shorter lag times and faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and slower growth of fibrils. There was no clear correlation between the rate of fibril elongation and ionic strength. Agitation during fibril formation attenuated the effects of insulin concentration and ionic strength on both lag times and fibril growth. The addition of ANS increased the lag time and decreased the apparent growth rate for insulin fibril formation. The ANS-induced inhibition appears to reflect the formation of amorphous aggregates. The denaturant, urea, decreased the lag time, whereas the stabilizers, trimethylamine N-oxide dihydrate (TMAO) and sucrose, increased the lag times. The results indicated that both nucleation and fibril growth were controlled by hydrophobic and electrostatic interactions. A kinetic model, involving the association of monomeric partially folded intermediates, whose concentration is stimulated by the air-water interface, leading to formation of the critical nucleus and thence fibrils, is proposed. 相似文献