首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   9篇
  102篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   1篇
  2013年   9篇
  2012年   15篇
  2011年   12篇
  2010年   10篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1976年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
91.
Pancreatic thiol proteinase inhibitor (PTPI), a variant of cystatin superfamily of cysteine protease inhibitors, has been isolated from pancreas of Capra hircus. In the present study, we examined the effects of acid denaturation and a co-solvent on PTPI with a focus on protein conformational changes and amyloid fibril formation. The results demonstrate that PTPI can form amyloid like fibrils. Acid denaturation as studied by CD and fluorescence spectroscopy showed that PTPI populates three partly unfolded species, a native like state at pH 3.0, a structured molten globule at pH 1.0 and partly unfolded species at pH 2.0, from each of which amyloid like fibrils grow as assessed by Thioflavin T (ThT) spectroscopy. Effect of trifluoroethanol (TFE) on acid induced states of PTPI was analyzed. TFE stabilized each of the three acid-induced intermediates at predenaturational concentrations (10%) and accelerated fibril formation. Morphology of the protein species at the beginning and end of reactions was observed using transmission electron microscopy. Solvent conditions were decisive for final fibril morphology. Biometals, Cu2+ and Zn2+ produced a concentration dependent decline in ThT fluorescence suggesting deaggregation of the fibrils. When added prior to amyloid fibril initiation 50 μM Cu2+ or 10 μM Zn2+ prevented any amyloid aggregation. Implications for therapeutics in view of Cu2+ and Zn2+ as essential micronutrients are suggested.  相似文献   
92.
Azo dyes have become a threat to public health because of its toxicity and carcinogenicity. Azoreductase enzyme plays a pivotal role in the degradation of azodyes released by industrial effluents and other resources. The degradation pathway has to be studied in detail for increasing the activity of azoreductase and for better degradation of azo dyes. But the data available on cyanobacterial azoreductase enzyme and its degradation pathway are still very less. Therefore the present work explored the azoreductase pathway of the cyanobacterium Nostoc sp. PCC7120 for better understanding of the degradation pathway and the other accessory interacting proteins involved. The accessory interacting proteins of azoreductase from cyanobacterium Nostoc sp. PCC7120 were obtained from STRING database. The proteins do not have a comprehensive three dimensional structure and are hypothetical. The secondary structure and functional analysis indicated that the proteins are all soluble proteins, without disulphide bonds and have alpha helices only. The structural prediction and docking study showed that alr2106, alr1063 and alr2326 have best docking result which tally with the STRING database confidence score and thus these proteins could possibly enhance the azoreductase activity and better dye degradation. These results will pave way for further increase in azoreductase activity and for better understanding of the dye degradation pathway.  相似文献   
93.
Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5′-(T/C)TAATTAA(T/A)(T/A)G-3′ DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein–DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll–3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll–3A01–Al. In addition, this change in secondary structure of Cll does not allow it to form protein–protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al–3A01–Cll where Cll binds to Al–3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein–protein interactions while proposing likely mechanism of recognition in ternary complex, Al–Cll–DNA.  相似文献   
94.
95.
96.
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology.  相似文献   
97.
98.
99.
Stress is perhaps easiest to conceptualize as a process which allows an organism to accommodate for the demands of its environment such that it can adapt to the prevailing set of conditions. Psychological stress is an important component with the potential to affect physiology adversely as has become evident from various studies in the area. Although these studies have established numerous effects of psychological stress on physiology, a global strategy for the correlation of these effects has yet to begin. Our comparative and systematic analysis of the published literature has unraveled certain interesting molecular mechanisms as clues to account for some of the observed effects of psychological stress on human physiology. In this study, we attempt to understand initial phase of the physiological response to psychological stress by analyzing interactions between innate immunity and metabolism at systems level by analyzing the data available in the literature. In light of our gene association-networks and enrichment analysis we have identified candidate genes and molecular systems which might have some associative role in affecting psychological stress response system or even producing some of the observed terminal effects (such as the associated physiological disorders). In addition to the already accepted role of psychological stress as a perturbation that can disrupt physiological homeostasis, we speculate that it is potentially capable of causing deviation of certain biological processes from their basal level activity after which they can return back to their basal tones once the effects of stress diminish. Based on the derived inferences of our comparative analysis, we have proposed a probabilistic mechanism for how psychological stress could affect physiology such that these adaptive deviations are sometimes not able to bounce back to their original basal tones, and thus increase physiological susceptibility to metabolic and immune imbalance.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号