首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   48篇
  国内免费   4篇
  1005篇
  2024年   3篇
  2023年   14篇
  2022年   30篇
  2021年   53篇
  2020年   27篇
  2019年   31篇
  2018年   35篇
  2017年   28篇
  2016年   36篇
  2015年   44篇
  2014年   64篇
  2013年   88篇
  2012年   95篇
  2011年   82篇
  2010年   54篇
  2009年   47篇
  2008年   53篇
  2007年   37篇
  2006年   30篇
  2005年   32篇
  2004年   21篇
  2003年   26篇
  2002年   13篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1969年   1篇
  1964年   1篇
  1937年   1篇
排序方式: 共有1005条查询结果,搜索用时 0 毫秒
111.
112.
Geminiviruses encapsidate single-stranded DNA genomes that replicate in plant cell nuclei through double-stranded DNA intermediates that associate with cellular histone proteins to form minichromosomes. Like most plant viruses, geminiviruses are targeted by RNA silencing and encode suppressor proteins such as AL2 and L2 to counter this defense. These related proteins can suppress silencing by multiple mechanisms, one of which involves interacting with and inhibiting adenosine kinase (ADK), a cellular enzyme associated with the methyl cycle that generates S-adenosyl-methionine, an essential methyltransferase cofactor. Thus, we hypothesized that the viral genome is targeted by small-RNA-directed methylation. Here, we show that Arabidopsis plants with mutations in genes encoding cytosine or histone H3 lysine 9 (H3K9) methyltransferases, RNA-directed methylation pathway components, or ADK are hypersensitive to geminivirus infection. We also demonstrate that viral DNA and associated histone H3 are methylated in infected plants and that cytosine methylation levels are significantly reduced in viral DNA isolated from methylation-deficient mutants. Finally, we demonstrate that Beet curly top virus L2- mutant DNA present in tissues that have recovered from infection is hypermethylated and that host recovery requires AGO4, a component of the RNA-directed methylation pathway. We propose that plants use chromatin methylation as a defense against DNA viruses, which geminiviruses counter by inhibiting global methylation. In addition, our results establish that geminiviruses can be useful models for genome methylation in plants and suggest that there are redundant pathways leading to cytosine methylation.  相似文献   
113.
Evidence is presented that, under conditions of 4.7 M NH4Cl and 10 mM Mg-ATP where no subunit dissociation can be detected by transport methods, a dynamic equilibrium exists in subfragment 1 between the associated and dissociated subunits. This is readily discerned by the formation of hybrid subfragment 1 species when a subfragment 1 isozyme is incubated with excess free light chains of the alternate isozyme. A similar process occurs with p-N,N'-phenylenedimaleimide (pPDM)-modified subfragment 1 containing [14C]Mg-ADP, but in this case, although extensive amounts of hybrid are formed, no loss of the trapped nucleotide is observed. Subunit scrambling without loss of the trapped nucleotide is apparent from incubating pPDM-SF1(A2)-[14C]Mg-ADP with unmodified SF1(A1) under similar conditions since the mixture subsequently contains SF1(A1), SF1(A2)h, pPDM-SF1(A1)h-[14C]Mg-ADP and pPDM-SF1(A2)-[14C]Mg-ADP. These data show that the nucleotide trapped in the presumptive active site does not escape during the dissociation-reassociation cycle, and suggest that the ATPase site resides solely on the heavy chain.  相似文献   
114.
We describe a development of a novel high-throughput phagocytosis assay based on a pH-sensitive cyanine dye, CypHer5E, which is maximally fluorescent in an acidic environment. This dye is ideally suited for the study of phagocytosis because of the acidic conditions generated in the intracellular phagocytic vesicles after particle uptake. Use of CypHer5E-labeled particles results in greatly reduced background from noninternalized particles and makes the assay more robust. Additionally, CypHer5E-labeled particles are resistant to fluorescence quenching observed in the aggressive and acidic environment of the phagosome with traditional dyes. The CypHer5E-based assay has been shown to work reliably in a variety of cell types, including primary human monocytes, primary human dendritic cells, primary human endothelial cells, human monocytic THP-1 cell line, and human/mouse hybrid macrophage cell line WBC264-9C. Inhibition of CypHer5E bead uptake by cytochalasin D was studied, and the 50% inhibition concentration (IC50) was determined. The assay was performed in 96- and 384-well formats, and it is appropriate for high-throughput cellular screening of processes and compounds affecting phagocytosis. The CypHer5E phagocytosis assay is superior to existing protocols because it allows easy distinction of true phagocytosis from particle adherence and can be used in microscopy-based measurement of phagocytosis.  相似文献   
115.
116.
Molecular and Cellular Biochemistry - DNA methylation is an epigenetic mechanism, which plays an important role in gene regulation. The present study evaluated DNA methylation profile of LINE1...  相似文献   
117.
The diverse roles of protein kinase C-δ (PKCδ) in cellular growth, survival, and injury have been attributed to stimulus-specific differences in PKCδ signaling responses. PKCδ exerts membrane-delimited actions in cells activated by agonists that stimulate phosphoinositide hydrolysis. PKCδ is released from membranes as a Tyr313-phosphorylated enzyme that displays a high level of lipid-independent activity and altered substrate specificity during oxidative stress. This study identifies an interaction between PKCδ''s Tyr313-phosphorylated hinge region and its phosphotyrosine-binding C2 domain that controls PKCδ''s enzymology indirectly by decreasing phosphorylation in the kinase domain ATP-positioning loop at Ser359. We show that wild-type (WT) PKCδ displays a strong preference for substrates with serine as the phosphoacceptor residue at the active site when it harbors phosphomimetic or bulky substitutions at Ser359. In contrast, PKCδ-S359A displays lipid-independent activity toward substrates with either a serine or threonine as the phosphoacceptor residue. Additional studies in cardiomyocytes show that oxidative stress decreases Ser359 phosphorylation on native PKCδ and that PKCδ-S359A overexpression increases basal levels of phosphorylation on substrates with both phosphoacceptor site serine and threonine residues. Collectively, these studies identify a C2 domain-pTyr313 docking interaction that controls ATP-positioning loop phosphorylation as a novel, dynamically regulated, and physiologically relevant structural determinant of PKCδ catalytic activity.  相似文献   
118.
Neurochemical Research - Various epidemiological survey suggests that the central nervous system is the target for many environmental contaminants. One among them is Aroclor 1254,...  相似文献   
119.
The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-Δ43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing (≈ 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I(1,1)/I(1,0), indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-Δ43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-Δ43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.  相似文献   
120.
A modular system for the construction of radiometalated antibodies was developed based on the bioorthogonal cycloaddition reaction between 3-(4-benzylamino)-1,2,4,5-tetrazine and the strained dienophile norbornene. The well-characterized, HER2-specific antibody trastuzumab and the positron emitting radioisotopes (64)Cu and (89)Zr were employed as a model system. The antibody was first covalently coupled to norbornene, and this stock of norbornene-modified antibody was then reacted with tetrazines bearing the chelators 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) or desferrioxamine (DFO) and subsequently radiometalated with (64)Cu and (89)Zr, respectively. The modification strategy is simple and robust, and the resultant radiometalated constructs were obtained in high specific activity (2.7-5.3 mCi/mg). For a given initial stoichiometric ratio of norbornene to antibody, the (64)Cu-DOTA- and (89)Zr-DFO-based probes were shown to be nearly identical in terms of stability, the number of chelates per antibody, and immunoreactivity (>93% in all cases). In vivo PET imaging and acute biodistribution experiments revealed significant, specific uptake of the (64)Cu- and (89)Zr-trastuzumab bioconjugates in HER2-positive BT-474 xenografts, with little background uptake in HER2-negative MDA-MB-468 xenografts or other tissues. This modular system-one in which the divergent point is a single covalently modified antibody stock that can be reacted selectively with various chelators-will allow for both greater versatility and more facile cross-comparisons in the development of antibody-based radiopharmaceuticals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号