全文获取类型
收费全文 | 850篇 |
免费 | 39篇 |
国内免费 | 4篇 |
专业分类
893篇 |
出版年
2024年 | 3篇 |
2023年 | 14篇 |
2022年 | 29篇 |
2021年 | 52篇 |
2020年 | 25篇 |
2019年 | 31篇 |
2018年 | 33篇 |
2017年 | 25篇 |
2016年 | 33篇 |
2015年 | 41篇 |
2014年 | 58篇 |
2013年 | 76篇 |
2012年 | 87篇 |
2011年 | 73篇 |
2010年 | 45篇 |
2009年 | 40篇 |
2008年 | 48篇 |
2007年 | 36篇 |
2006年 | 30篇 |
2005年 | 27篇 |
2004年 | 21篇 |
2003年 | 23篇 |
2002年 | 12篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1989年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1978年 | 1篇 |
1974年 | 3篇 |
排序方式: 共有893条查询结果,搜索用时 0 毫秒
101.
Geminiviruses encapsidate single-stranded DNA genomes that replicate in plant cell nuclei through double-stranded DNA intermediates that associate with cellular histone proteins to form minichromosomes. Like most plant viruses, geminiviruses are targeted by RNA silencing and encode suppressor proteins such as AL2 and L2 to counter this defense. These related proteins can suppress silencing by multiple mechanisms, one of which involves interacting with and inhibiting adenosine kinase (ADK), a cellular enzyme associated with the methyl cycle that generates S-adenosyl-methionine, an essential methyltransferase cofactor. Thus, we hypothesized that the viral genome is targeted by small-RNA-directed methylation. Here, we show that Arabidopsis plants with mutations in genes encoding cytosine or histone H3 lysine 9 (H3K9) methyltransferases, RNA-directed methylation pathway components, or ADK are hypersensitive to geminivirus infection. We also demonstrate that viral DNA and associated histone H3 are methylated in infected plants and that cytosine methylation levels are significantly reduced in viral DNA isolated from methylation-deficient mutants. Finally, we demonstrate that Beet curly top virus L2- mutant DNA present in tissues that have recovered from infection is hypermethylated and that host recovery requires AGO4, a component of the RNA-directed methylation pathway. We propose that plants use chromatin methylation as a defense against DNA viruses, which geminiviruses counter by inhibiting global methylation. In addition, our results establish that geminiviruses can be useful models for genome methylation in plants and suggest that there are redundant pathways leading to cytosine methylation. 相似文献
102.
Rashmi Priya Kenneth Wee Srikanth Budnar Guillermo A. Gomez Alpha S. Yap 《Cell cycle (Georgetown, Tex.)》2016,15(22):3033-3041
Non-muscle myosin II (NMII) motor proteins are responsible for generating contractile forces inside eukaryotic cells. There is also a growing interest in the capacity for these motor proteins to influence cell signaling through scaffolding, especially in the context of RhoA GTPase signaling. We previously showed that NMIIA accumulation and stability within specific regions of the cell cortex, such as the zonula adherens (ZA), allows the formation of a stable RhoA signaling zone. Now we demonstrate a key role for Coronin 1B in maintaining this junctional pool of NMIIA, as depletion of Coronin 1B significantly compromised myosin accumulation and stability at junctions. The loss of junctional NMIIA, upon Coronin 1B knockdown, perturbed RhoA signaling due to enhanced junctional recruitment of the RhoA antagonist, p190B Rho GAP. This effect was blocked by the expression of phosphomimetic MRLC-DD, thus reinforcing the central role of NMII in regulating RhoA signaling. 相似文献
103.
Mavi P Rajavelu P Rayapudi M Paul RJ Mishra A 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(11):G1347-G1355
Eosinophilic esophagitis (EoE) is an emerging chronic esophageal disease. Despite the increasing diagnosis of EoE globally, the causes of EoE and other esophageal eosinophilic disorders are not clearly understood. EoE pathology includes accumulation of inflammatory cells (e.g., eosinophils, mast cells), characteristic endoscopic features (e.g., furrows, the formation of fine concentric mucosal rings, exudates), and functional impairments (e.g., esophageal stricture, dysmotility). We hypothesized that the esophageal structural pathology and functional impairments of EoE develop as a consequence of the effector functions of the accumulated inflammatory cells. We analyzed eosinophils (anti-major basic protein immunostaining), esophageal stricture (X-ray barium swallowing), and esophageal motility (isometric force) in two established transgenic murine models of EoE (CD2-IL-5 and rtTA-CC10-IL-13) and a novel eosinophil-deficient model (ΔdblGATA/CD2-IL-5). Herein, we show the following: 1) CD2-IL-5 and doxycycline (DOX)-induced rtTA-CC10-IL-13 mice have chronic eosinophilic and mast cell esophageal inflammation; 2) eosinophilic esophageal inflammation promotes esophageal stricture in both transgenic murine models; 3) the eosinophil-deficient ΔdblGATA/CD-2-IL-5 mice were protected from the induction of stricture, whereas the eosinophil-competent CD2-IL-5 mice develop esophageal stricture; 4) esophageal stricture is not reversible in DOX-induced rtTA-CC10-IL-13 mice (8 wk DOX followed by 8 wk no-DOX); and 5) IL-5 transgene-induced (CD2-IL-5) EoE evidences esophageal dysmotility (relaxation and contraction) that is independent of the eosinophilic esophageal inflammation: CD2-IL-5 and ΔdblGATA/CD2-IL-5 mice have comparable esophageal dysmotility. Collectively, our present study directly implicates chronic eosinophilic inflammation in the development of the esophageal structural impairments of experimental EoE. 相似文献
104.
We describe a development of a novel high-throughput phagocytosis assay based on a pH-sensitive cyanine dye, CypHer5E, which is maximally fluorescent in an acidic environment. This dye is ideally suited for the study of phagocytosis because of the acidic conditions generated in the intracellular phagocytic vesicles after particle uptake. Use of CypHer5E-labeled particles results in greatly reduced background from noninternalized particles and makes the assay more robust. Additionally, CypHer5E-labeled particles are resistant to fluorescence quenching observed in the aggressive and acidic environment of the phagosome with traditional dyes. The CypHer5E-based assay has been shown to work reliably in a variety of cell types, including primary human monocytes, primary human dendritic cells, primary human endothelial cells, human monocytic THP-1 cell line, and human/mouse hybrid macrophage cell line WBC264-9C. Inhibition of CypHer5E bead uptake by cytochalasin D was studied, and the 50% inhibition concentration (IC50) was determined. The assay was performed in 96- and 384-well formats, and it is appropriate for high-throughput cellular screening of processes and compounds affecting phagocytosis. The CypHer5E phagocytosis assay is superior to existing protocols because it allows easy distinction of true phagocytosis from particle adherence and can be used in microscopy-based measurement of phagocytosis. 相似文献
105.
The consistent use of the taxonomic system of binomial nomenclature (genus and species) was first popularized by Linnaeus nearly three-hundred years ago to classify mainly plants and animals. His main goal was to give labels that would ensure that biologists could agree on which organism was under investigation. One-hundred fifty years later, Darwin considered the term species as one of convenience and not essentially different from variety. In the modern era, exploration of the world's niches together with advances in genomics have expanded the number of named species to over 1.8 million, including many microorganisms. However, even this large number excludes over 90% of microorganisms that have yet to be cultured or classified. In naming new isolates in the microbial world, the challenge remains the lack of a universally held and evenly applied standard for a species. The definition of species based on the capacity to form fertile offspring is not applicable to microorganisms and 70% DNA-DNA hybridization appears rather crude in light of the many completed genome sequences. The popular phylogenetic marker, 16S rRNA, is tricky for classification since it does not provide multiple characteristics or phenotypes used classically for this purpose. Using most criteria, agreement may usually be found at the genus level, but species level distinctions are problematic. These observations lend credence to the proposal that the species concept is flawed when applied to prokaryotes. In order to address this topic, we have examined the taxonomy of extremely halophilic Archaea, where the order, family, and even a genus designation have become obsolete, and the naming and renaming of certain species has led to much confusion in the scientific community. 相似文献
106.
Vishnu Priya Bollampalli Lívia Harumi Yamashiro Xiaogang Feng Dami?n Bierschenk Yu Gao Hans Blom Birgitta Henriques-Normark Susanne Nylén Antonio Gigliotti Rothfuchs 《PLoS pathogens》2015,11(10)
The transport of antigen from the periphery to the draining lymph node (DLN) is critical for T-cell priming but remains poorly studied during infection with Mycobacterium bovis Bacille Calmette-Guérin (BCG). To address this we employed a mouse model to track the traffic of Dendritic cells (DCs) and mycobacteria from the BCG inoculation site in the skin to the DLN. Detection of BCG in the DLN was concomitant with the priming of antigen-specific CD4+ T cells at that site. We found EpCAMlow CD11bhigh migratory skin DCs to be mobilized during the transport of BCG to the DLN. Migratory skin DCs distributed to the T-cell area of the LN, co-localized with BCG and were found in close apposition to antigen-specific CD4+ T cells. Consequently, blockade of skin DC traffic into DLN dramatically reduced mycobacterial entry into DLN and muted T-cell priming. Interestingly, DC and mycobacterial entry into the DLN was dependent on IL-1R-I, MyD88, TNFR-I and IL-12p40. In addition, we found using DC adoptive transfers that the requirement for MyD88 in BCG-triggered migration was not restricted to the migrating DC itself and that hematopoietic expression of MyD88 was needed in part for full-fledged migration. Our observations thus identify a population of DCs that contribute towards the priming of CD4+ T cells to BCG infection by transporting bacilli into the DLN in an IL-1R-MyD88-dependent manner and reveal both DC-intrinsic and -extrinsic requirements for MyD88 in DC migration. 相似文献
107.
Lijuan Sun Sanjay Verma Navin Michael Siew Pang Chan Jianhua Yan Suresh Anand Sadananthan Stefan G. Camps Hui Jen Goh Priya Govindharajulu John Totman David Townsend Julian Pak‐Nam Goh Lei Sun Bernhard Otto Boehm Su Chi Lim Siew Kwan Sze Christiani Jeyakumar Henry Houchun Harry Hu S. Sendhil Velan Melvin Khee‐Shing Leow 《Obesity (Silver Spring, Md.)》2019,27(9):1434-1442
108.
109.
Molecular and Cellular Biochemistry - DNA methylation is an epigenetic mechanism, which plays an important role in gene regulation. The present study evaluated DNA methylation profile of LINE1... 相似文献
110.
Bavithra S. Sugantha Priya E. Selvakumar K. Krishnamoorthy G. Arunakaran J. 《Neurochemical research》2015,40(9):1858-1869
Neurochemical Research - Various epidemiological survey suggests that the central nervous system is the target for many environmental contaminants. One among them is Aroclor 1254,... 相似文献