首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   74篇
  2021年   8篇
  2019年   8篇
  2018年   16篇
  2017年   10篇
  2016年   13篇
  2015年   23篇
  2014年   23篇
  2013年   31篇
  2012年   35篇
  2011年   38篇
  2010年   36篇
  2009年   22篇
  2008年   31篇
  2007年   32篇
  2006年   35篇
  2005年   26篇
  2004年   24篇
  2003年   42篇
  2002年   14篇
  2001年   18篇
  2000年   20篇
  1999年   22篇
  1998年   10篇
  1997年   9篇
  1996年   12篇
  1995年   14篇
  1993年   7篇
  1992年   28篇
  1991年   21篇
  1990年   19篇
  1989年   22篇
  1988年   10篇
  1987年   10篇
  1986年   13篇
  1985年   17篇
  1984年   12篇
  1982年   8篇
  1981年   18篇
  1980年   16篇
  1979年   12篇
  1978年   13篇
  1977年   11篇
  1976年   9篇
  1975年   7篇
  1973年   11篇
  1972年   9篇
  1971年   12篇
  1970年   6篇
  1969年   7篇
  1968年   7篇
排序方式: 共有925条查询结果,搜索用时 62 毫秒
91.
Long-term immune control of viral replication still remains a major challenge in retroviral diseases. Several monoclonal antibodies (MAbs) have already shown antiviral activities in vivo, including in the clinic but their effects on the immune system of treated individuals are essentially unknown. Using the lethal neurodegeneration induced in mice upon infection of neonates by the FrCas(E) retrovirus as a model, we report here that transient treatment by a neutralizing MAb shortly after infection can, after an immediate antiviral effect, favor the development of a strong protective host immune response containing viral propagation long after the MAb has disappeared. In vitro virus neutralization- and complement-mediated cell lysis assays, as well as in vivo viral challenges and serum transfer experiments, indicate a clear and essential contribution of the humoral response to antiviral protection. Our observation may have important therapeutic consequences as it suggests that short antibody-based therapies early after infection should be considered, at least in the case of maternally infected infants, as adjunctive treatment strategies against human immunodeficiency virus, not only for a direct effect on the viral load but also for favoring the emergence of an endogenous antiviral immune response.  相似文献   
92.
93.
An amperometric microbial biosensor for highly specific, sensitive and rapid quantitative determination of p-nitrophenol was developed. The biosensor takes advantage of the ability of Moraxella sp. to specifically degrade p-nitrophenol to hydroquinone, a more electroactive compound than p-nitrophenol. The electrochemical oxidation current of hydroquinone formed in biodegradation of p-nitrophenol was measured at Moraxella sp.-modified carbon paste electrode and correlated to p-phenol concentrations. The optimum response was realized by electrode constructed using 15 mg of dry cell weight per 1 g of carbon paste and operating at 0.3 V (versus Ag/AgCl reference) in pH 7.5, 20 mM sodium phosphate buffer. Operating at these optimum conditions the biosensor had excellent selectivity against phenol derivatives and was able to measure as low as 20 nM (2.78 ppb) p-nitrophenol with very good accuracy and reproducibility. The biosensor was stable for approximately 3 weeks when stored at 4 degrees C. The applicability of the biosensor to measure p-nitrophenol in lake water was demonstrated.  相似文献   
94.
95.
Naip5/Birc1e and susceptibility to Legionella pneumophila   总被引:6,自引:0,他引:6  
Genetic analysis in mice is a powerful approach for the identification of genes and proteins that have a key role at the interface of the host-pathogen interaction. The Lgn1 locus has been found to control the intracellular replication of Legionella pneumophila in murine macrophages. Using functional complementation in transgenic mice, the Naip5/Birc1e gene has been identified as responsible for the Lgn1 effect. The classification of Naip5/Birc1e as a member of the NLR protein family suggests that Naip5/Birc1e acts as an intracellular sensor of L. pneumophila. The nature of the signal transduced by Naip5/Birc1e in response to Legionella products is of great interest but is currently unknown. Here, several possible scenarios are presented.  相似文献   
96.
Peripheral blood may be the most feasible tissue source in clinical assessment of differences in gene expression between diseases and drug treatments due to accessibility. Yet, gene expression profiling from blood remains a challenge. Blood is a complicated biological system consisting of a variety of cell types at different stages of development. In addition, blood is also one of the most variable tissue types for gene expression analysis. The success of a blood microarray study depends on the choice of cell isolation method and preparation technique. In this review, we give a brief overview of the current status of using blood as a source for expression profiling and discuss potential applications of this method in the practices of clinical research.  相似文献   
97.
The Pax3 protein has two DNA binding domains, a Paired domain (PD) and a paired-type Homeo domain (HD). Although the PD and HD can bind to cognate DNA sequences when expressed individually, genetic and biochemical data indicate that the two domains are functionally interdependent in intact Pax3. The mechanistic basis of this functional interdependence is unknown and was studied by protease sensitivity. Pax3 was modified by the creation of Factor Xa cleavage sites at discrete locations in the PD, the HD, and in the linker segment joining the PD and the HD (Xa172, Xa189, and Xa216) in individual Pax3 mutants. The effect of Factor Xa insertions on protein stability and on DNA binding by the PD and the HD was measured using specific target site sequences. Independent insertions at position 100 in the linker separating the first from the second helix-turn-helix motif of the PD and at position 216 immediately upstream of the HD were found to be readily accessible to Factor Xa cleavage. The effect of DNA binding by the PD or the HD on accessibility of Factor Xa sites inserted in the same or in the other domain was monitored and quantitated for multiple mutants bearing different numbers of Xa sites at each position. In general, DNA binding reduced accessibility of all sites, suggesting a more compact and less solvent-exposed structure of DNA-bound versus DNA-free Pax3. Results of dose response and time course experiments were consistent and showed that DNA binding by the PD not only caused a local structural change in the PD but also caused a conformational change in the HD (P3OPT binding to Xa216 mutants); similarly, DNA binding by the HD also caused a conformational change in the PD (P2 binding to Xa100 mutants). These results provide a structural basis for the functional interdependence of the two DNA binding domains of Pax3.  相似文献   
98.
Lipid peroxidation generates aldehydes, which react with DNA bases, forming genotoxic exocyclic etheno(epsilon)-adducts. E-bases have been implicated in vinyl chloride-induced carcinogenesis, and increased levels of these DNA lesions formed by endogenous processes are found in human degenerative disorders. E-adducts are repaired by the base excision repair pathway. Here, we report the efficient biological hijacking of the human alkyl-N-purine-DNA glycosylase (ANPG) by 3,N(4)-ethenocytosine (epsilonC) when present in DNA. Unlike the ethenopurines, ANPG does not excise, but binds to epsilonC when present in either double-stranded or single-stranded DNA. We developed a direct assay, based on the fluorescence quenching mechanism of molecular beacons, to measure a DNA glycosylase activity. Molecular beacons containing modified residues have been used to demonstrate that the epsilonC.ANPG interaction inhibits excision repair both in reconstituted systems and in cultured human cells. Furthermore, we show that the epsilonC.ANPG complex blocks primer extension by the Klenow fragment of DNA polymerase I. These results suggest that epsilonC could be more genotoxic than 1,N(6)-ethenoadenine (epsilonA) residues in vivo. The proposed model of ANPG-mediated genotoxicity of epsilonC provides a new insight in the molecular basis of lipid peroxidation-induced cell death and genome instability in cancer.  相似文献   
99.
Mammalian Vangl1 and Vangl2 are highly conserved membrane proteins that have evolved from a single ancestral protein Strabismus/Van Gogh found in Drosophila. Mutations in the Vangl2 gene cause a neural tube defect (craniorachischisis) characteristic of the looptail (Lp) mouse. Studies in model organisms indicate that Vangl proteins play a key developmental role in establishing planar cell polarity (PCP) and in regulating convergent extension (CE) movements during embryogenesis. The role of Vangl1 in these processes is virtually unknown, and the molecular function of Vangl1 and Vangl2 in PCP and CE is poorly understood. Using a yeast two-hybrid system, glutathione S-transferase pull-down and co-immunoprecipitation assays, we show that both mouse Vangl1 and Vangl2 physically interact with the three members of the cytoplasmic Dishevelled (Dvl) protein family. This interaction is shown to require both the predicted cytoplasmic C-terminal half of Vangl1/2 and a portion of the Dvl protein containing PDZ and DIX domains. In addition, we show that the two known Vangl2 loss-of-function mutations identified in two independent Lp alleles associated with neural tube defects impair binding to Dvl1, Dvl2, and Dvl3. These findings suggest a molecular mechanism for the neural tube defect seen in Lp mice. Our observations indicate that Vangl1 biochemical properties parallel those of Vangl2 and that Vangl1 might, therefore, participate in PCP and CE either in concert with Vangl2 or independently of Vangl2 in discrete cell types.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号