首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1814篇
  免费   132篇
  国内免费   1篇
  2023年   9篇
  2022年   29篇
  2021年   56篇
  2020年   30篇
  2019年   32篇
  2018年   45篇
  2017年   56篇
  2016年   61篇
  2015年   76篇
  2014年   89篇
  2013年   142篇
  2012年   178篇
  2011年   130篇
  2010年   102篇
  2009年   76篇
  2008年   83篇
  2007年   86篇
  2006年   82篇
  2005年   88篇
  2004年   74篇
  2003年   63篇
  2002年   55篇
  2001年   20篇
  2000年   18篇
  1999年   12篇
  1998年   18篇
  1997年   8篇
  1996年   9篇
  1995年   7篇
  1993年   8篇
  1992年   11篇
  1991年   11篇
  1990年   15篇
  1989年   10篇
  1988年   14篇
  1987年   9篇
  1986年   12篇
  1985年   9篇
  1984年   6篇
  1983年   9篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1975年   6篇
  1972年   7篇
  1968年   6篇
排序方式: 共有1947条查询结果,搜索用时 15 毫秒
991.
992.
Four (1, 2, 4 and 6) synthetic quaternary ammonium derivatives of pyranochromenones and (coumarinyloxy)acetamides were synthesized and investigated for their antimicrobial efficacy on MRSA (Methicillin-resistant Staphylococcus aureus), and multi-drug resistant Pseudomonas aeruginosa, Salmonella enteritidis and Mycobacterium tuberculosis H37Rv strain. One of the four compounds screened i.e. N,N,N-triethyl-10-((4,8,8-trimethyl-2-oxo-2,6,7,8-tetrahydropyrano[3,2-g]chromen-10-yl)oxy)decan-1-aminium bromide (1), demonstrated significant activity against S. aureus, P. aeruginosa and M. tuberculosis with MIC value of 16, 35, and 15.62 µg/ml respectively. The cytotoxicity evaluation of compound 1 on A549 cell lines showed it to be a safe antimicrobial molecule, TEM study suggested that the compound led to the rupture of the bacterial cell walls.  相似文献   
993.
994.
Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups’ activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups—hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors—to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about \(0.1 {^{\circ }}\) over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA (\(\sim \)0.01\({^{\circ }}\)–0.04\({^{\circ }})\) and FA (\(\sim \)0.004\({^{\circ }}\)\(0.2{^{\circ }}\)), except hip extensors and hip adductors, which showed a tendency to increase the FA (\(\sim \)0.004\({^{\circ }}\)\(0.02{^{\circ }}\)). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.  相似文献   
995.
996.
A present study was conducted to investigate compatibility of β-blocker drugs( like atenolol, labetalol hydrochloride, bisoprolol fumarate, metoprolol succinate, carvedilol and propranolol hydrochloride) with the pharmaceutical excipient povidone. To check the influence of peroxide impurity present in povidone on the stability of β-blockers, a binary mixture technique has been adopted. The binary mixtures (1:1) of β-blockers with povidone excipient were stored for the duration of 6 months at accelerated conditions (40°C and 75% RH) and analyzed with the technique of high-performance liquid chromatography (HPLC). On analysis, HPLC results shows that, the percentage of total impurity for atenolol—2.15%, bisoprolol fumarate—3.55%, carvedilol—2.19%, and labetalol hydrochloride—1.89%, with respect to povidone. To verify the interaction of H2O2 present in povidone as an impurity, oxidative degradation of selected active pharmaceutical ingredients were performed and degradation profile were compared with that of degradation impurities generated in drug-excipient mixture at accelerated conditions. The relative retention time (RRT) of impurities generated in accelerated stability study samples resembles the RRT of degradation products generated by oxidative degradation of pure drugs. Thus, it confirms that degradation of β-blockers with povidone was mediated by organic peroxides present as an impurity in povidone.  相似文献   
997.
Cold-adapted, complex polysaccharide-degrading marine bacteria have important implications in biogeochemical processes and biotechnological applications. Bacteria capable of degrading complex polysaccharide substrates, mainly starch, have been isolated from various cold environments, such as sea ice, glaciers, subglacial lakes, and marine sediments. However, the total diversity of polysaccharide-degrading culturable bacteria in Kongsfjorden, Arctic Ocean, remains unexplored. In the study reported here, we tested 215 cold-adapted heterotrophic bacterial cultures (incubated at 4 and 20 °C, respectively) isolated from Kongsfjorden, for the production of cold-active extracellular polysaccharide-degrading enzymes, including amylase, pectinase, alginase, xylanase, and carboxymethyl (CM)-cellulase. Our results show that 52 and 41% of the bacterial isolates tested positive for extracellular enzyme activities at 4 and 20 °C, respectively. A large fraction of the bacterial isolates (37% of the positive isolates) showed multiple extracellular enzyme activities. Alginase and pectinase were the most predominantly active enzymes, followed by amylase, xylanase, and CM-cellulase. All isolates which tested positive for extracellular enzyme activities were affiliated to microbial class Gammaproteobacteria. The four genera with the highest number of isolates were Pseudomonas, followed by Psychrobacter, Pseudoalteromonas, and Shewanella. The prevalence of complex polysaccharide-degrading enzymes among the isolates indicates the availability of complex polysaccharide substrates in the Kongsfjorden, likely as a result of glacial melting and/or macroalgal load. In addition, the observed high functional/phenotypic diversity in terms of extracellular enzyme activities within the bacterial genera indicates a role in regulating carbon/carbohydrate turnover in the Kongsfjorden, especially by reducing recalcitrance.  相似文献   
998.
Resveratrol is a dietary polyphenol that displays neuroprotective properties in several in vivo and in vitro experimental models, by modulating oxidative and inflammatory responses. Glutathione (GSH) is a key antioxidant in the central nervous system (CNS) that modulates several cellular processes, and its depletion is associated with oxidative stress and inflammation. Therefore, this study sought to investigate the protective effects of resveratrol against GSH depletion pharmacologically induced by buthionine sulfoximine (BSO) in C6 astroglial cells, as well as its underlying cellular mechanisms. BSO exposure resulted in several detrimental effects, decreasing glutamate-cysteine ligase (GCL) activity, cystine uptake, GSH intracellular content and the activities of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR). Moreover, BSO increased reactive oxygen/nitrogen species (ROS/RNS) levels and pro-inflammatory cytokine release. Resveratrol prevented these effects by protecting astroglial cells against BSO-induced cytotoxicity, by modulating oxidative and inflammatory responses. Additionally, we observed that pharmacological inhibition of heme oxygenase 1 (HO-1), an essential cellular defense against oxidative and inflammatory injuries, abolished all the protective effects of resveratrol. These observations suggest HO-1 pathway as a cellular effector in the mechanism by which resveratrol protects astroglial cells against GSH depletion, a condition that may be associated to neurodegenerative diseases.  相似文献   
999.
8-Amino-imidazo[1,5-a]pyrazine-based Bruton’s tyrosine kinase (BTK) inhibitors, such as 6, exhibited potent inhibition of BTK but required improvements in both kinase and hERG selectivity (Liu et al., 2016; Gao et al., 2017). In an effort to maintain the inhibitory activity of these analogs and improve their selectivity profiles, we carried out SAR exploration of groups at the 3-position of pyrazine compound 6. This effort led to the discovery of the morpholine group as an optimized pharmacophore. Compounds 13, 23 and 38 displayed excellent BTK potencies, kinase and hERG selectivities, and pharmacokinetic profiles.  相似文献   
1000.
The mycotoxin citrinin, is produced by several species of Penicillium, Aspergillus and Monascus, and is capable of inducing cytotoxicity, oxidative stress and apoptosis. The aim of the present study was to investigate the effect of citrinin in mouse skeletal muscle cells (C2C12) and to overcome the cellular adverse effects by supplementing green tea extract (GTE) rich in polyphenols. C2C12 myoblasts were differentiated to myotubes and were exposed to citrinin in a dose dependent manner (0–100 µM) for 24 h and IC50 value was found to be 100 µM that resulted in decreased cell viability, increased LDH leakage and compromised membrane integrity. Mitochondrial membrane potential loss, increased accumulation of intracellular ROS and sub G1 phase of cell cycle was observed. To ameliorate the cytotoxic effects of CTN, C2C12 cells were pretreated with GTE (20, 40, 80 µg/ml) for 2 h followed by citrinin (100 µM) treatment for 24 h. GTE pretreatment combated citrinin-induced cytotoxicity and oxidative stress. GTE at 40 and 80 µg/ml significantly promoted cell survival and upregulated antioxidant enzyme activities (CAT, SOD, GPx) and endogenous antioxidant GSH, while the gene and protein expression levels were significantly restored through its effective antioxidant mechanism. Present study results suggested the antioxidant properties of GTE as a herbal source in ameliorating the citrinin-induced oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号