首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   66篇
  国内免费   1篇
  2023年   2篇
  2021年   13篇
  2020年   15篇
  2019年   14篇
  2018年   15篇
  2017年   20篇
  2016年   15篇
  2015年   25篇
  2014年   19篇
  2013年   27篇
  2012年   35篇
  2011年   31篇
  2010年   24篇
  2009年   20篇
  2008年   23篇
  2007年   27篇
  2006年   21篇
  2005年   22篇
  2004年   25篇
  2003年   23篇
  2002年   26篇
  2001年   25篇
  2000年   19篇
  1999年   21篇
  1998年   13篇
  1997年   9篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   10篇
  1988年   8篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1979年   3篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1942年   2篇
  1859年   3篇
  1858年   6篇
  1857年   1篇
  1856年   3篇
排序方式: 共有634条查询结果,搜索用时 15 毫秒
11.
Scrapie hamster brains contain at least 5–10 g of scrapie-associated fibrils (SAF) per brain as estimated by the amount of its major constituent, a protein of about 26 000 daltons (SAF-protein). It can be extracted efficiently by a 10% solution of sarkosyl and can be enriched by differentia] centrifugation and buffer extraction. Scrapie infectivity, SAF, and SAF-protein copurify.  相似文献   
12.
The regulation of acid secretion was clarified by the development of H2-receptor antagonists in the 1970s. It appears that gastrin and acetylcholine exert their effects on acid secretion mainly by stimulation of histamine release from the enterochromaffin-like (ECL) cell of the fundic gastric mucosa. The isolated ECL cell of rat gastric mucosa responds to gastrin/cholecystokinin (CCK), acetylcholine, and epinephrine with histamine release and to somatostatin and R-alpha-methyl histamine by inhibition of histamine release. Histamine and acetylcholine stimulate the parietal cell by elevation of cAMP or [Ca]i by activation of H2 or M3 receptors, respectively. These independent pathways converge to activate the gastric acid pump, the H+,K+ ATPase. Activation is a function of the association of the ATPase with a potassium chloride transport pathway that occurs in the membrane of the secretory canaliculus of the parietal cell. Hence the secretory canaliculus is the site of acid secretion, the acid being pumped into the lumen of the canaliculus. The pump is composed of two subunits, a large catalytic and a smaller glycosylated protein. This final step of acid secretion has become the target of drugs also designed to inhibit acid secretion. The target domain of the benzimidazole class of acid pump inhibitors is the extracytoplasmic domain of the pump that is secreting acid, and the target amino acids are the cysteines present in this domain. The secondary structure of the pump can be analyzed by determining trypsin-sensitive bonds in intact, cytoplasmic-side-out vesicles of the ATPase, and it has been shown that the alpha subunit has at least eight membrane-spanning segments. Omeprazole, the first acid pump inhibitor, forms a disulfide bond with cysteines in the extracytoplasmic loop between the fifth and sixth membrane-spanning segment and to a cysteine in the extracytoplasmic loop between the seventh and eight segments, preventing phosphorylation of the pump by ATP. As a result of the effective and long-lasting inhibition of acid secretion by the acid pump inhibitor, superior clinical results have been found in all forms of acid-related disease.  相似文献   
13.
14.
15.
Identifying seasonal shifts in community assembly for multiple biological groups is important to help enhance our understanding of their ecological dynamics. However, such knowledge on lotic assemblages is still limited. In this study, we used biological traits and functional diversity indices in association with null model analyses to detect seasonal shifts in the community assembly mechanisms of lotic macroinvertebrates and diatoms in an unregulated subtropical river in China. We found that functional composition and functional diversity (FRic, FEve, FDis, MNN, and SDNN) showed seasonal variation for macroinvertebrate and diatom assemblages. Null models suggested that environmental filtering, competitive exclusion, and neutral process were all important community assembly mechanisms for both biological groups. However, environmental filtering had a stronger effect on spring macroinvertebrate assemblages than autumn assemblages, but the effect on diatom assemblages was the same in both seasons. Moreover, macroinvertebrate and diatom assemblages were shaped by different environmental factors. Macroinvertebrates were filtered mainly by substrate types, velocity, and CODMn, while diatoms were mainly shaped by altitude, substrate types, and water quality. Therefore, our study showed (a) that different biological assemblages in a river system presented similarities and differences in community assembly mechanisms, (b) that multiple processes play important roles in maintaining benthic community structure, and (c) that these patterns and underlying mechanisms are seasonally variable. Thus, we highlight the importance of exploring the community assembly mechanisms of multiple biological groups, especially in different seasons, as this is crucial to improve the understanding of river community changes and their responses to environmental degradation.  相似文献   
16.
Most bioassessment programs rest on the assumption that species have different niches, and that abiotic environmental conditions and changes therein determine community structure. This assumption is thus equivalent to the species sorting perspective (i.e. that species differ in their responses to environmental variation) in metacommunity ecology. The degree to which basing bioassessment on the species sorting perspective is reasonable is likely to be related to the spatial extent of a study and the characteristics of the organism groups (e.g. dispersal ability) with which the effects of anthropogenic changes are assessed. Recent findings in metacommunity research have stressed that community structure is determined not only by local abiotic environmental conditions but also by biotic interactions and dispersal‐related effects. For example, dispersal limitation may prevent community structure recovery from the effects of a putative stressor, as organisms may not be able to disperse to all sites in a region. Mass effects (i.e. the presence of species in environmentally suboptimal sites due to high dispersal rates from environmentally suitable sites) may, in turn, obscure the effects of a stressor, as dispersal from source sites (e.g. an unaltered site) allows persistence at sink sites (e.g. an anthropogenically altered site). Better bioassessment should thus take both niche‐ and dispersal‐related processes simultaneously into consideration, which can be accomplished by explicitly modelling spatial location as a proxy for dispersal effects. Such an integrated approach should be included in bioassessment programs using general multivariate approaches, predictive modelling, and multimetric indices.  相似文献   
17.
Highlights? Mammalian KRAS is enriched in rare codons that limit its expression ? Changing rare to common codons increases ectopic and endogenous KRAS expression ? KRAS oncogenicity is limited by rare codons ? Other gene pairs exhibit high sequence identity but opposing codon bias  相似文献   
18.
Genetic resources of forest trees are considered as a key factor for the persistence of forest ecosystems because the ability of tree species to survive under changing climate depends strongly on their intraspecific variation in climate response. Therefore, utilizing available genetic variation in climate response and planting alternative provenances suitable for future climatic conditions is considered as an important adaptation measure for forestry. On the other hand, the distribution of adaptive genetic diversity of many tree species is still unknown and the predicted shift of ecological zones and species’ distribution may threaten forest genetic resources that are important for adaptation. Here, we use Norway spruce in Austria as a case study to demonstrate the genetic variation in climate response and to analyse the existing network of genetic conservation units for its effectiveness to safeguard the hotspots of adaptive and neutral genetic diversity of this species. An analysis of the climate response of 480 provenances, clustered into 9 groups of climatically similar provenances, revealed high variation among provenance groups. The most productive and promising provenance clusters for future climates originate from three regions that today depict the warmest and driest areas of the natural spruce distribution in Austria. Gap analysis of the Austrian genetic conservation units in the EUFGIS Portal suggests adequate coverage of the genetic hotspots in southern parts of Austria, but not in eastern and northern Austria. Therefore conservation measures and sustainable utilization of the valuable genetic resources in these regions need to be expanded to cover their high adaptive genetic variation and local adaptation to a warmer climate. The study shows that current conservation efforts need to be evaluated for their effectiveness to protect genetic resources that are important for the survival of trees in a future climate.  相似文献   
19.
State-of-the-art monoclonal antibody (mAb) discovery methods that utilize surface display techniques in prokaryotic and eukaryotic cells require multiple steps of reformatting and switching of hosts to transition from display to expression. This results in a separation between antibody affinity maturation and full-length mAb production platforms. Here, we report for the first time, a method in Glyco-engineered Pichia pastoris that enables simultaneous surface display and secretion of full-length mAb molecules with human-like N-glycans using the same yeast cell. This paradigm takes advantage of homo-dimerization of the Fc portion of an IgG molecule to a surface-anchored "bait" Fc, which results in targeting functional “half” IgGs to the cell wall of Pichia pastoris without interfering with the secretion of full length mAb. We show the utility of this method in isolating high affinity, well-expressed anti-PCSK9 leads from a designed library that was created by mating yeasts containing either light chain or heavy chain IgG libraries. Coupled with Glyco-engineered Pichia pastoris , this method provides a powerful tool for the discovery and production of therapeutic human mAbs in the same host thus improving drug developability and potentially shortening the discovery time cycle.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号