全文获取类型
收费全文 | 732篇 |
免费 | 52篇 |
专业分类
784篇 |
出版年
2023年 | 5篇 |
2022年 | 17篇 |
2021年 | 21篇 |
2020年 | 15篇 |
2019年 | 18篇 |
2018年 | 15篇 |
2017年 | 22篇 |
2016年 | 27篇 |
2015年 | 45篇 |
2014年 | 50篇 |
2013年 | 65篇 |
2012年 | 75篇 |
2011年 | 66篇 |
2010年 | 35篇 |
2009年 | 33篇 |
2008年 | 53篇 |
2007年 | 44篇 |
2006年 | 41篇 |
2005年 | 24篇 |
2004年 | 27篇 |
2003年 | 20篇 |
2002年 | 21篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1985年 | 2篇 |
1982年 | 1篇 |
1970年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有784条查询结果,搜索用时 15 毫秒
11.
Wei-Cai Yang Hayo C.J. Canter Cramers Peter Hogendijk Panagiotis Katinakis Carel A. Wijffelman Henk Franssen Albert Van Kammen Ton Bisseling 《The Plant journal : for cell and molecular biology》1992,2(2):143-151
In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it is hypothesized that the Rhizobium Nod factor induces cell division in the root cortex by stimulating the production of flavonoids that function as auxin transport inhibitors. In nodules CHS mRNA is predominantly present in a region at the apex of the nodule consisting of meristematic and cortical cells. These cells are not infected by Rhizobium. Therefore it is postulated that CHS plays a role in nodule development rather than in a defence response. In roots CHS mRNA is located at a similar position as in nodules, suggesting that CHS has the same function in both root and nodule development. When nodules are formed by mutants of Rhizobium leguminosarum bv. viciae that are unable to secrete β(1-2) glucan and to synthesize the O-antigen containing LPS I, CHS genes are also expressed in regions of the nodule that are infected by Rhizobium. It is postulated that the impaired development of nodules formed by these mutants is due to an induction of a plant defence response. 相似文献
12.
Vamvakoudis E Vrabas IS Galazoulas C Stefanidis P Metaxas TI Mandroukas K 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(3):930-936
The purpose of this study was to examine the effects of prolonged basketball skills training on maximal aerobic power, isokinetic strength, joint mobility, and body fat percentage, in young basketball players, and controls of the same age. Twenty basketball players and 18 control boys participated in the study. Basketball players participated both in their school's physical education program and in a children's basketball team training program. Controls participated only in their school's physical education program. All subjects were tested every 6 months (18 months total, 11(1/2), 12, 12(1/2), 13 years old) for VO(2)max, peak torque values of the quadriceps and hamstrings at 180 and 300 degrees x s(-1) and range of motion of the knee and hip joints. Body fat percentage was assessed at the beginning and the end of the experimental period. Results showed that the basketball group had lower heart rate values in all ages and higher VO(2) values in the initial test compared with the control in submaximal intensity. The VO(2)max was altered in both groups on the final test, when compared to the initial test. However, the basketball group had a higher VO(2)max on each of the 6-month follow-up measurements, compared to the control group (p < 0.001). At the end of the 18-month follow-up period no significant differences were observed in isokinetic strength and joint mobility of the lower limbs between the 2 groups. On the contrary, the boys of the trained group had significantly lower percentage body fat values, compared to controls. In conclusion, regular basketball training increased aerobic power and decreased body fat percentage of prepubescent boys, while it did not affect muscle strength and joint mobility of the lower limbs. The major implication suggested by the findings of the present study is that, in order to improve the basic physical components, specific training procedures should be incorporated during the basketball training sessions. It is recommended that all children should be involved in some type of cardiovascular and resistance training program. 相似文献
13.
RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root. 相似文献
14.
Julie Chaumeil Mariann Micsinai Panagiotis Ntziachristos Ludovic Deriano Joy M.-H. Wang Yanhong Ji Elphege P. Nora Matthew J. Rodesch Jeffrey A. Jeddeloh Iannis Aifantis Yuval Kluger David G. Schatz Jane A. Skok 《Cell reports》2013,3(2):359-370
Highlights? RAG-dependent monoallelic loop formation is linked to monoallelic RAG cleavage ? RAG enrichment, cleavage, and higher-order loop formation occur at the 3′ end of Tcra ? Looping out is a determinant of directed RAG targeting ? ATM-mediated control of looping out is linked to the maintenance of genome stability 相似文献
15.
16.
Panagiotis Bargiotas Antje Krenz Hannah Monyer Markus Schwaninger 《Channels (Austin, Tex.)》2012,6(6):453-456
Pannexin (Px, Panx) channels have been implicated in several physiological and pathological processes. We recently studied the potential contribution of pannexins in ischemic brain damage using Px1-/- Px2-/- mice and provided evidence that (1) the release of IL-1β and hemichannel function in astrocytes are, in contrast to published data, not affected by the absence of Px1 and Px2, (2) channel function in neurons lacking Px1 and Px2 is impaired and (3) Px1-/- Px2-/- mice had a better functional outcome and smaller infarcts than wild-type mice when subjected to ischemic stroke. Here, we further investigate the neurological outcome of wild-type and pannexin double-knockout mice 48 h after permanent occlusion of the distal middle cerebral artery (MCAO). Pannexin double-knockout mice (Px1-/- Px2-/-) were less impaired in parameters such as exploration, anxiety, sensorimotor function and behavioral symmetry. 相似文献
17.
Polykratis A Katsoris P Courty J Papadimitriou E 《The Journal of biological chemistry》2005,280(23):22454-22461
Heparin affin regulatory peptide (HARP) is an 18-kDa secreted growth factor that has a high affinity for heparin and a potent role on tumor growth and angiogenesis. We have previously reported that HARP is mitogenic for different types of endothelial cells and also affects cell migration and differentiation (12). In this study we examined the signaling pathways involved in the migration and tube formation on matrigel of human umbilical vein endothelial cells (HUVEC) induced by HARP. We report for the first time that receptor-type protein-tyrosine phosphatase beta/zeta (RPTPbeta/zeta), which is a receptor for HARP in neuronal cell types, is also expressed in HUVEC. We also document that HARP signaling through RPTPbeta/zeta leads to activation of Src kinase, focal adhesion kinase, phosphatidylinositol 3-kinase, and Erk1/2. Sodium orthovanadate, chondroitin sulfate-C, PP1, wortmannin, LY294002, and U0126 inhibit HARP-mediated signaling and HUVEC migration and tube formation. In addition, RPTPbeta/zeta suppression using small interfering RNA technology interrupts intracellular signals and HUVEC migration and tube formation induced by HARP. These results establish the role of RPTPbeta/zeta as a receptor of HARP in HUVEC and elucidate the HARP signaling pathway in endothelial cells. 相似文献
18.
The probable involvement of phospholipase D (PLD)/phosphatidic acid (PA) signalling in the hyperosmotic stress response of Triticum turgidum root cells was investigated by examining the effects of butanol-1, butanol-2, phosphatidylbutanol (PtdBut), N-acylethanolamine (NAE) and PA on the hyperosmotic response, the organization of the tubulin cytoskeleton and the accumulation of a phosphorylated p38-like mitogen-activated protein (MAP) kinase (phospho-p46) in plasmolysed root cells. The effects of all the treatments were assessed by differential interference contrast (DIC) microscopy of living cells, tubulin immunofluorescence, conventional transmission electron microscopy (TEM), tubulin immunogold localization, protoplast volume measurements and western blot analysis. Butanol-1 and NAE compromised the viability of plasmolysed cells, induced a marked reduction in the plasmolysed protoplast volume, and inhibited hyperosmotically induced tubulin macrotubule formation and the accumulation of phospho-p46. Exogenous PA reinforced the hyperosmotic response of T. turgidum root cells and positively affected tubulin macrotubule formation. Additionally, PA reduced the effects of butanol-1 in plasmolysed cells. Taken together, the data suggest that PLD-mediated PA synthesis occurs upstream of the accumulation of phospho-p46 to regulate hyperosmotically induced macrotubule formation in plasmolysed T. turgidum root cells. 相似文献
19.
Paschalidis A Konstantinos Toumi Imene Moschou N Panagiotis Kalliopi A Roubelakis-Angelakis 《Plant signaling & behavior》2010,5(9):1153-1156
Recently we showed that ABA is at least partly responsible for the induction of the polyamine exodus pathway in Vitis vinifera plants. Both sensitive and tolerant plants employ this pathway to orchestrate stress responses, differing between stress adaptation and programmed cell death. Herein we show that ABA is an upstream signal for the induction of the polyamine catabolic pathway in Vitis vinifera. Thus, amine oxidases are producing H2O2 which signals stomata closure. Moreover, the previously proposed model for the polyamine catabolic pathway is updated and discussed.Key words: plant growth, abscissic acid, polyamines, amine oxidases, signaling, oxidative stress, programmed cell deathWe have shown that tobacco salinity induces an exodus of the polyamine (PA) spermidine (Spd) into the apoplast where it is oxidized by polyamine oxidase (PAO) generating hydrogen peroxide (H2O2). Depending on the size of H2O2, it signals either tolerance-effector genes or the programmed cell death syndrome1 (PCD). PAs are ubiquitous and biologically active molecules. In the recent years remarkable progress has been accomplished regarding the regulation of PAs biosynthesis and catalysis, not only under normal physiological but also under stress conditions.1 The most studied PAs are the diamine Putrescine (Put) and its derivatives the triamine Spd and the tetramine spermine (Spm). They are present in the cells in soluble form (S), or conjugated either to low molecular weight compounds (soluble hydrolyzed form, SH) or to “macro” molecules or cell walls (pellet hydrolyzed form, PH). In higher plants, Put is synthesized either directly from ornithine via ornithine decarboxylase (ODC; EC 4.1.1.17) or indirectly from arginine via arginine decarboxylase (ADC; EC 4.1.1.19). Spd and Spm are synthesized via Spd synthase (EC 2.5.1.16, SPDS) and Spm synthase (EC 2.5.1.22, SPMS), respectively, by sequential addition of aminopropyl groups to Put, catalyzed by S-adenosyl-L-methionine decarboxylase (SAMDC; EC 4.1.1.50).2,3 In plants, PAs are present in the cytoplasm, as well as in cellular organelles.4 Recently it was shown that during stress, they are secreted into the apoplast where they are oxidized by amine oxidases (AOs), such as diamine oxidase for Put (DAO, E.C. 1.4.3.6) and polyamine oxidase (PAO, E.C. 1.4.3.4) for Spd and Spm.1,5,6 Oxidation of PAs generates, amongst other products, H2O21,7,8 which is involved in cell signaling processes coordinated by abscissic acid (ABA),9 but also acts as efficient oxidant and, at high concentration, orchestrates the PCD syndrome.6,10 Two types of PA catabolism by PAO are known in plants: the terminal and the back-conversion pathways. The terminal one takes place in the apoplast, produces except H2O2, 1,3-diaminopropane and an aldehyde depending on the species. On the other hand, the back-conversion pathway is intracellular (cytoplasm and peroxisomes) resulting to the production of H2O2 and the sequential production of Put by Spm via Spd.1,7 Now we have shown that PA exodus also occurs in Vitis vinifera and this phenomenon is at least partially induced by abscissic acid (ABA).11 Thus, exogenous application of ABA results to PA exodus into the apoplast of grapevine. PA is oxidized by an AO resulting to production of H2O2. When the titer of H2O2 is below a threshold, expression of tolerance-effector genes is induced, while when it exceeds this threshold the programmed cell death (PCD) syndrome is induced. 相似文献
20.