首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   87篇
  884篇
  2022年   5篇
  2021年   12篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   14篇
  2016年   15篇
  2015年   35篇
  2014年   35篇
  2013年   31篇
  2012年   46篇
  2011年   38篇
  2010年   18篇
  2009年   23篇
  2008年   38篇
  2007年   36篇
  2006年   41篇
  2005年   28篇
  2004年   26篇
  2003年   32篇
  2002年   29篇
  2001年   22篇
  2000年   24篇
  1999年   17篇
  1998年   10篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   7篇
  1993年   11篇
  1992年   18篇
  1991年   19篇
  1990年   9篇
  1989年   11篇
  1988年   20篇
  1987年   14篇
  1986年   6篇
  1985年   10篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1980年   9篇
  1979年   17篇
  1978年   9篇
  1977年   13篇
  1976年   11篇
  1975年   9篇
  1974年   5篇
  1973年   12篇
  1969年   6篇
排序方式: 共有884条查询结果,搜索用时 0 毫秒
31.
T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function by virtue of its ability to function in the presence of metal-chelating agents. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer.  相似文献   
32.
High Density Molecular Linkage Maps of the Tomato and Potato Genomes   总被引:57,自引:0,他引:57  
High density molecular linkage maps, comprised of more than 1000 markers with an average spacing between markers of approximately 1.2 cM (ca. 900 kb), have been constructed for the tomato and potato genomes. As the two maps are based on a common set of probes, it was possible to determine, with a high degree of precision, the breakpoints corresponding to 5 chromosomal inversions that differentiate the tomato and potato genomes. All of the inversions appear to have resulted from single breakpoints at or near the centromeres of the affected chromosomes, the result being the inversion of entire chromosome arms. While the crossing over rate among chromosomes appears to be uniformly distributed with respect to chromosome size, there is tremendous heterogeneity of crossing over within chromosomes. Regions of the map corresponding to centromeres and centromeric heterochromatin, and in some instances telomeres, experience up to 10-fold less recombination than other areas of the genome. Overall, 28% of the mapped loci reside in areas of putatively suppressed recombination. This includes loci corresponding to both random, single copy genomic clones and transcribed genes (detected with cDNA probes). The extreme heterogeneity of crossing over within chromosomes has both practical and evolutionary implications. Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species.  相似文献   
33.
Published reports indicate that CD45RO-CD45RAbright T cells are native T cells, CD45RObrightCD45RA- T cells are memory T cells, and that concomitant loss of CD45RA expression and gain of CD45RO expression occurs during transition from naive to memory status. Thus, following in vitro activation of CD45RO- CD45RAbright T cells, a subset of transitional CD45ROdimCD45RAdim T cells is observed before conversion to a CD45RObrightCD45RA- phenotype is completed. Interestingly, all three of these phenotypic subsets are represented in the circulating human lymphocyte pool. We thus used dual-color flow cytometry to phenotypically characterize CD45RObrightCD45RA-, CD45ROdimCD45RAdim, and CD45RO- CD45RAbright lymphocytes. Both the CD45RObrightCD45RA- and CD45ROdimCD45RAdim subsets consisted almost entirely of T cells, whereas the CD45RO-CD45RAbright subset contained T cells plus essentially all of the B and natural killer cells. Additional studies used three-color flow cytometry to assess activation markers on T cells within the three subsets defined by CD45RO/CD45RA expression. CD25 expression increased with conversion from naive to memory status (5% of CD45RO-CD45RAbright, 24% of CD45ROdimCD45RAdim, and 42% of CD45RObrightCD45RA- T cells), whereas CD38 expression decreased during conversion (76, 53, and 27%, respectively). We also assessed the fluorescent intensities of CD11a, CD2, and CD44, shown by others to be increased on memory, compared to naive T cells. Visual inspection of fluorescence cytograms confirmed these findings, and further showed that transitional T cells express these markers at levels indistinguishable from those for naive T cells. These findings suggest that acquisition of CD25 and loss of CD38 occur relatively early in the naive-to-memory transition process, being evident in the transitional cell subset. In contrast, increased expression of CD11a, CD2, and CD44 appear to represent late events, occurring after loss of CD45RA and gain of CD45RO has been completed.  相似文献   
34.
The unique cytoplasmic loop regions of the alpha 1, alpha 2, alpha 3, and alpha 5 subunits of the GABAA receptor were expressed in bacterial and used to produce subunit-specific polyclonal antisera. Antibodies immobilized on protein A-Sepharose were used to isolate naturally occurring alpha-specific populations of GABAA receptors from rat brain that retained the ability to bind [3H]muscimol, [3H]flunitrazepam, [3H]Ro15-1788, and [125I]iodo-clonazepam with high affinity. Pharmacological characterization of these subtypes revealed marked differences between the isolated receptor populations and was generally in agreement with the reported pharmacological profiles of GABAA receptors in cells transiently transfected with alpha 1 beta 1 gamma 2, alpha 2 beta 1 gamma 2, alpha 3 beta 1 gamma 2, and alpha 5 beta 1 gamma 2 combinations of subunits. Additional subtypes were also identified that bind [3H]muscimol but do not bind benzodiazepines with high affinity. The majority of GABAA receptor oligomers contains only a single type of alpha subunit, and we conclude that alpha 1, alpha 2, alpha 3, and alpha 5 subunits exist in vivo in combination with the beta subunit and gamma 2 subunit.  相似文献   
35.
36.
37.
38.
The photochemical reaction centers from a variety of purple photosynthetic bacteria are composed of a trimer of protein subunits. However, the recently isolated reaction center from Rhodopseudomonas gelatinosa appears to have only two subunits. In this paper we examine the EPR characteristics of the primary photochemical reactants in this species, and compare them with those of other species. Despite of the differences in protein composition, no dramatic differences in EPR properties are seen in vivo, although some interesting effects are seen upon solubilization of the reaction center, which may be related to the unusual lability of the isolated preparation. Perhaps the most noteworthy phenomenon seen in Rps. gelatinosa is the apparent ability of electrons on the reduced intermediary electron carrier to tunnel at low temperatures to the oxidized c-type cytochrome, which has not been seen in other species studied to date.  相似文献   
39.
We have examined the bacteriochlorophyll reaction-center complex of Chlorobium limicola f. thiosulfatophilum, strain Tassajara. Our results indicate that the midpoint potential of the primary electron donor bacteriochlorophyll of the reaction center is +250 mV at pH 6.8, while that of cytochrome c-553 is +165 mV. There are two cytochrome c-553 hemes per reaction center, and the light-induced oxidation of each is biphasic (t1/2 of less than 5 mus and approximately 50 mus). We belive that this indicates a two state equilibrium with each cytochrome heme being either close to, or a little removed from, the reaction-center bacteriochlorophyll. We have also titrated the primary electron acceptor of the reaction center. Its equilibrium midpoint potential at pH 6.8 is below -450 mV. This is very much lower than the previous estimate for green bacteria, and also substantially lower than values obtained for purple bacteria. Such a low-potential primary acceptor would be thermodynamically capable of direct reduction of NAD+ via ferredoxin in a manner analagous to photosystem I in chloroplasts and blue-green algae.  相似文献   
40.
Roger C. Prince  John M. Olson 《BBA》1976,423(2):357-362
We have examined the bacteriochlorophyll reaction-center complex of Chlorobium limicola f. thiosulfatophilum, strain Tassajara. Our results indicate that the midpoint potential of the primary electron donor bacteriochlorophyll of the reaction center is +250 mV at pH 6.8, while that of cytochrome c-553 is +165 mV. There are two cytochrome c-553 hemes per reaction center, and the light-induced oxidation of each is biphasic (t12 of < 5 μs and ≈ 50 μs). We believe that this indicates a two state equilibrium with each cytochrome heme being either close to, or a little removed from, the reaction-center bacteriochlorophyll.We have also titrated the primary electron acceptor of the reaction center. Its equilibrium midpoint potential at pH 6.8 is below ?450 mV. This is very much lower than the previous estimate for green bacteria, and also substantially lower than values obtained for purple bacteria. Such a low-potential primary acceptor would be thermodynamically capable of direct reduction of NAD+ via ferredoxin in a manner analagous to photosystem I in chloroplasts and blue-green algae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号