首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3482篇
  免费   404篇
  3886篇
  2021年   48篇
  2020年   27篇
  2019年   38篇
  2018年   29篇
  2017年   35篇
  2016年   68篇
  2015年   101篇
  2014年   131篇
  2013年   138篇
  2012年   163篇
  2011年   190篇
  2010年   87篇
  2009年   79篇
  2008年   125篇
  2007年   139篇
  2006年   132篇
  2005年   116篇
  2004年   122篇
  2003年   120篇
  2002年   108篇
  2001年   129篇
  2000年   115篇
  1999年   100篇
  1998年   43篇
  1997年   50篇
  1996年   44篇
  1995年   42篇
  1994年   27篇
  1993年   29篇
  1992年   91篇
  1991年   84篇
  1990年   49篇
  1989年   77篇
  1988年   57篇
  1987年   68篇
  1986年   38篇
  1985年   44篇
  1984年   48篇
  1983年   41篇
  1982年   27篇
  1981年   36篇
  1979年   35篇
  1978年   40篇
  1977年   38篇
  1976年   41篇
  1975年   37篇
  1974年   40篇
  1973年   27篇
  1972年   49篇
  1971年   35篇
排序方式: 共有3886条查询结果,搜索用时 15 毫秒
991.
One of our goals is to understand the mechanisms that deposit mineral within collagen fibrils, and as a first step we recently determined the size exclusion characteristics of the fibril. This study revealed that apatite crystals up to 12 unit cells in size can access the water within the fibril, whereas molecules larger than a 40-kDa protein are excluded. Based on these observations, we proposed a novel mechanism for fibril mineralization: that macromolecular inhibitors of apatite growth favor fibril mineralization by selectively inhibiting crystal growth in the solution outside of the fibril. To test this mechanism, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentration and the only macromolecule in solution is fetuin, a 48-kDa inhibitor of apatite growth. Our experiments with this system demonstrated that fetuin determines the location of mineral growth; in the presence of fetuin mineral grows exclusively within the fibril, whereas in its absence mineral grows in solution outside the fibril. Additional experiments showed that fetuin is also able to localize calcification to the interior of synthetic matrices that have size exclusion characteristics similar to those of collagen and that it does so by selectively inhibiting mineral growth outside of these matrices. We termed this new calcification mechanism “mineralization by inhibitor exclusion,” the selective mineralization of a matrix using a macromolecular inhibitor of mineral growth that is excluded from that matrix. Future studies will be needed to evaluate the possible role of this mechanism in bone mineralization.The type I collagen fibril plays several critical roles in bone mineralization. The mineral in bone is located primarily within the fibril (16), and during mineralization the fibril is formed first and then water within the fibril is replaced with mineral (7, 8). The collagen fibril therefore provides the aqueous compartment in which mineral grows. We have recently shown that the physical structure of the collagen fibril plays an important additional role in mineralization, that of a gatekeeper allowing molecules smaller than a 6-kDa protein to freely access the water within the fibril while preventing molecules larger than a 40-kDa protein from entering the fibril (9).Molecules too large to enter the collagen fibril can have important effects on mineralization within the fibril. We have suggested that large inhibitors of apatite growth can paradoxically favor mineralization within the fibril by selectively preventing apatite growth in the solution outside of the fibril (9). We have also proposed that large nucleators of apatite formation may generate small crystals outside the collagen fibril and that some of these crystals can subsequently diffuse into the fibril and grow (9). Because the size exclusion characteristics of the fibril allow rapid penetration of molecules the size of a 6-kDa protein, apatite crystals up to 12 unit cells in size should in principle be able to freely access all of the water within the fibril (9).We subsequently tested these hypotheses for the role of large molecules in fibril mineralization by determining the impact of removing fetuin on the serum-driven calcification of collagen fibrils (10). Fetuin is the most abundant serum inhibitor of apatite crystal growth (11, 12), and with a molecular weight of 48 kDa fetuin is too large to penetrate the collagen fibril (9). Fetuin is also termed fetuin-A (to distinguish it from a recently discovered homologue, fetuin-B (13)) and is sometimes called α2-HS glycoprotein in humans. Our working hypothesis was that fetuin is required for the serum-driven calcification of a collagen fibril and that its role is to favor calcification within the collagen fibril by selectively preventing apatite crystal growth in the solution outside the fibril.The results of this study demonstrate that removing fetuin from serum eliminates the ability of serum to induce the calcification of a type I collagen matrix and that adding purified fetuin to fetuin-depleted serum restores this activity (14). This study further shows that a massive mineral precipitate forms during the incubation of fetuin-depleted serum but not during the incubation of serum containing fetuin (14). These observations are consistent with the hypothesis that a large serum nucleator generates apatite crystals in the solution outside of the collagen fibril, some of which penetrate into the aqueous interior of the fibril (14). Because fetuin can trap only those nuclei that it can access, the crystal nuclei that penetrate the fibril grow far more rapidly than those nuclei trapped by fetuin outside of the fibril, and the collagen fibril therefore selectively calcifies.The goal of the present experiments was to further understand the role of fetuin in the calcification of type I collagen fibrils. To accomplish this goal, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentrations and the only macromolecule in the solution is fetuin. This system allowed us to probe the impact of fetuin and only fetuin on the location and extent of collagen calcification. Because fetuin is the subject of this study, it is useful to review briefly its occurrence and calcification-inhibitory activity. Fetuin is a 48-kDa glycoprotein that is synthesized in the liver and is found at high concentrations in mammalian serum (15, 16) and bone (1722). The serum fetuin concentration in adult mammals ranges from 0.5 to 1.5 mg/ml, whereas the serum fetuin concentration in the fetus and neonate is typically far higher (16). Fetuin is also one of the most abundant noncollagenous proteins found in bone (1722), with a concentration of about 1 mg fetuin/g bone in rat (21), bovine (17), and human (19, 23) bone. Despite the abundance of fetuin in bone, however, it has not been possible to demonstrate the synthesis of fetuin in calcified tissues, and it is therefore presently thought that the fetuin found in bone arises from hepatic synthesis via serum (20, 22). This view is supported by the observation that fetuin binds strongly to apatite, the mineral phase of bone, and is selectively concentrated from serum onto apatite (18).In vitro studies have demonstrated that fetuin is an important inhibitor of apatite growth and precipitation in serum containing increased levels of calcium and phosphate (12) and that targeted deletion of the fetuin gene reduces the ability of serum to arrest apatite formation by over 70% (11). More recent studies have shown that a fetuin-mineral complex is formed in the course of the fetuin-mediated inhibition of apatite growth and precipitation in serum containing increased calcium and phosphate (24, 25). Purified fetuin also potently inhibits the growth of apatite crystals from supersaturated solutions of calcium phosphate (12, 24). In solutions in which a decline in calcium occurs within minutes because of the spontaneous formation of apatite crystals, the presence of added fetuin sustains elevated calcium levels for at least 24 h (24).  相似文献   
992.
993.
Prions cause transmissible neurodegenerative diseases and replicate by conformational conversion of normal benign forms of prion protein (PrPC) to disease‐causing PrPSc isoforms. A systems approach to disease postulates that disease arises from perturbation of biological networks in the relevant organ. We tracked global gene expression in the brains of eight distinct mouse strain–prion strain combinations throughout the progression of the disease to capture the effects of prion strain, host genetics, and PrP concentration on disease incubation time. Subtractive analyses exploiting various aspects of prion biology and infection identified a core of 333 differentially expressed genes (DEGs) that appeared central to prion disease. DEGs were mapped into functional pathways and networks reflecting defined neuropathological events and PrPSc replication and accumulation, enabling the identification of novel modules and modules that may be involved in genetic effects on incubation time and in prion strain specificity. Our systems analysis provides a comprehensive basis for developing models for prion replication and disease, and suggests some possible therapeutic approaches.  相似文献   
994.
Chronic Myeloid Leukaemia (CML) is characterized by expression of the constitutively active Bcr-Abl tyrosine kinase. We have shown previously that the negative growth regulator, CCN3, is down-regulated as a result of Bcr-Abl kinase activity and that CCN3 has a reciprocal relationship of expression with BCR-ABL. We now show that CCN3 confers growth regulation in CML cells by causing growth inhibition and regaining sensitivity to the induction of apoptosis. The mode of CCN3 induced growth regulation was investigated in K562 CML cells using gene transfection and treatment with recombinant CCN3. Both strategies showed CCN3 regulated CML cell growth by reducing colony formation capacity, increasing apoptosis and reducing ERK phosphorylation. K562 cells stably transfected to express CCN3 showed enhanced apoptosis in response to treatment with the tyrosine kinase inhibitor, imatinib. Whilst CCN3 expression was low or undetectable in CML stem cells, primary CD34+ CML progenitors were responsive to treatment with recombinant CCN3. This study shows that CCN3 is an important growth regulator in haematopoiesis, abrogation of CCN3 expression enhances BCR-ABL dependent leukaemogenesis. CCN3 restores growth regulation, regains sensitivity to the induction of apoptosis and enhances imatinib cell kill in CML cells. CCN3 may provide an additional therapeutic strategy in the management of CML.  相似文献   
995.

Background

Artemisinin combination treatments (ACT) are recommended as first line treatment for falciparum malaria throughout the malaria affected world. We reviewed the efficacy of a 3-day regimen of mefloquine and artesunate regimen (MAS3), over a 13 year period of continuous deployment as first-line treatment in camps for displaced persons and in clinics for migrant population along the Thai-Myanmar border.

Methods and Findings

3,264 patients were enrolled in prospective treatment trials between 1995 and 2007 and treated with MAS3. The proportion of patients with parasitaemia persisting on day-2 increased significantly from 4.5% before 2001 to 21.9% since 2002 (p<0.001). Delayed parasite clearance was associated with increased risk of developing gametocytaemia (AOR = 2.29; 95% CI, 2.00–2.69, p = 0.002). Gametocytaemia on admission and carriage also increased over the years (p = 0.001, test for trend, for both). MAS3 efficacy has declined slightly but significantly (Hazards ratio 1.13; 95% CI, 1.07–1.19, p<0.001), although efficacy in 2007 remained well within acceptable limits: 96.5% (95% CI, 91.0–98.7). The in vitro susceptibility of P. falciparum to artesunate increased significantly until 2002, but thereafter declined to levels close to those of 13 years ago (geometric mean in 2007: 4.2 nM/l; 95% CI, 3.2–5.5). The proportion of infections caused by parasites with increased pfmdr1 copy number rose from 30% (12/40) in 1996 to 53% (24/45) in 2006 (p = 0.012, test for trend).

Conclusion

Artesunate-mefloquine remains a highly efficacious antimalarial treatment in this area despite 13 years of widespread intense deployment, but there is evidence of a modest increase in resistance. Of particular concern is the slowing of parasitological response to artesunate and the associated increase in gametocyte carriage.  相似文献   
996.

Background

Bacterial colonization is hypothesized to play a pathogenic role in the non-healing state of chronic wounds. We characterized wound bacteria from a cohort of chronic wound patients using a 16S rRNA gene-based pyrosequencing approach and assessed the impact of diabetes and antibiotics on chronic wound microbiota.

Methodology/Principal Findings

We prospectively enrolled 24 patients at a referral wound center in Baltimore, MD; sampled patients'' wounds by curette; cultured samples under aerobic and anaerobic conditions; and pyrosequenced the 16S rRNA V3 hypervariable region. The 16S rRNA gene-based analyses revealed an average of 10 different bacterial families in wounds—approximately 4 times more than estimated by culture-based analyses. Fastidious anaerobic bacteria belonging to the Clostridiales family XI were among the most prevalent bacteria identified exclusively by 16S rRNA gene-based analyses. Community-scale analyses showed that wound microbiota from antibiotic treated patients were significantly different from untreated patients (p = 0.007) and were characterized by increased Pseudomonadaceae abundance. These analyses also revealed that antibiotic use was associated with decreased Streptococcaceae among diabetics and that Streptococcaceae was more abundant among diabetics as compared to non-diabetics.

Conclusions/Significance

The 16S rRNA gene-based analyses revealed complex bacterial communities including anaerobic bacteria that may play causative roles in the non-healing state of some chronic wounds. Our data suggest that antimicrobial therapy alters community structure—reducing some bacteria while selecting for others.  相似文献   
997.
Elevated serum macrophage migration inhibitory factor (MIF) is associated with severe sepsis, but it is not clear whether bacteria stimulate synthesis of MIF by blood leukocytes directly or via induction of TNF. Here we assess production of MIF mRNA and protein by blood leukocytes from healthy human subjects (n = 28) following exposure to bacteria commonly associated with sepsis (Escherichia coli and Streptococcus pneumoniae). Bacteria did not increase levels of MIF mRNA or secreted protein. CD14+ monocytes were the main cell type producing MIF before and after stimulation. Exposure of leukocytes to TNF did not induce MIF. Hence elevated levels of serum MIF observed in sepsis may not reflect MIF produced by blood leukocytes stimulated directly by bacteria or TNF.  相似文献   
998.
Tissue-targeted metabonomics, or the use of microdialysis sampling with NMR detection, can be used to monitor the metabolic profiles of specific tissues without the need to take tissue biopsies. This allows for sampling from the same animal over the time course of the experiment, reducing animal-to-animal variability and decreasing the number of animals required, however, this approach to metabonomics studies has not been fully characterized. In this work liver microdialysis sampling was performed on male Sprague–Dawley rats and the effects of diurnal rhythms, animal activity and anesthesia on the liver extracellular fluid composition examined. Diurnal rhythms and animal activity caused little change in liver metabolism, but anesthesia caused dramatic effects attributed to the hyperglycemia induced by xylazine and isoflurane. This approach was then applied to the characterization of the hepatotoxicity of doxorubicin, an anticancer agent known to induce oxidative stress. In these studies, two probes were implanted in the liver and doxorubicin was dosed through one of the probes. Comparisons were made between the metabolic profiles from the two probes to distinguish basal metabolic effects from those induced by doxorubicin. Doxorubicin altered hepatic metabolism by different mechanisms in anesthetized and awake rats. These studies also provided important implications for the design of future tissue-targeted metabonomics experiments.  相似文献   
999.
Aims:  Elucidation of the regulation of ChiB production in Aspergillus nidulans .
Methods and Results:  Mutational inactivation of the A. nidulans chiB gene resulted in a nonautolytic phenotype. To better understand the mechanisms controlling both developmental progression and fungal autolysis, we examined a range of autolysis-associated parameters in A. nidulans developmental and/or autolytic mutants. Investigation of disorganization of mycelial pellets, loss of biomass, extra-/intracellular chitinase activities, ChiB production and chiB mRNA levels in various cultures revealed that, in submerged cultures, initialization of autolysis and stationary phase-induced ChiB production are intimately coupled, and that both processes are controlled by the FluG-BrlA asexual sporulation regulatory pathway. ChiB production does not affect the progression of apoptotic cell death in the aging A. nidulans cultures.
Conclusions:  The endochitinase ChiB plays an important role in autolysis of A. nidulans , and its production is initiated by FluG-BrlA signalling. Despite the fact that apoptosis is an inseparable part of fungal autolysis, its regulation is independent to FluG-initiated sporulation signalling.
Significance and Impact of the Study:  Deletion of chiB and fluG homologues in industrial filamentous fungal strains may stabilize the hyphal structures in the autolytic phase of growth and limit the release of autolytic hydrolases into the culture medium.  相似文献   
1000.
The Icelandic population has been sampled in many disease association studies, providing a strong motivation to understand the structure of this population and its ramifications for disease gene mapping. Previous work using 40 microsatellites showed that the Icelandic population is relatively homogeneous, but exhibits subtle population structure that can bias disease association statistics. Here, we show that regional geographic ancestries of individuals from Iceland can be distinguished using 292,289 autosomal single-nucleotide polymorphisms (SNPs). We further show that subpopulation differences are due to genetic drift since the settlement of Iceland 1100 years ago, and not to varying contributions from different ancestral populations. A consequence of the recent origin of Icelandic population structure is that allele frequency differences follow a null distribution devoid of outliers, so that the risk of false positive associations due to stratification is minimal. Our results highlight an important distinction between population differences attributable to recent drift and those arising from more ancient divergence, which has implications both for association studies and for efforts to detect natural selection using population differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号