首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   32篇
  2024年   1篇
  2022年   5篇
  2021年   8篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   19篇
  2015年   13篇
  2014年   24篇
  2013年   24篇
  2012年   38篇
  2011年   40篇
  2010年   30篇
  2009年   21篇
  2008年   27篇
  2007年   29篇
  2006年   25篇
  2005年   17篇
  2004年   15篇
  2003年   22篇
  2002年   14篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
排序方式: 共有457条查询结果,搜索用时 31 毫秒
31.

Background

Diabetes peer support, where one person with diabetes helps guide and support others, has been proposed as a way to improve diabetes management. We have tested whether different diabetes peer support strategies can improve metabolic and/or psychological outcomes.

Methods

People with type 2 diabetes (n = 1,299) were invited to participate as either ‘peer’ or ‘peer support facilitator’ (PSF) in a 2x2 factorial randomised cluster controlled trial across rural communities (130 clusters) in England. Peer support was delivered over 8–12 months by trained PSFs, supported by monthly meetings with a diabetes educator. Primary end point was HbA1c. Secondary outcomes included quality of life, diabetes distress, blood pressure, waist, total cholesterol and weight. Outcome assessors and investigators were masked to arm allocation. Main factors were 1:1 or group intervention. Analysis was by intention-to-treat adjusting for baseline.

Results

The 4 arms were well matched (Group n = 330, 1:1(individual) n = 325, combined n = 322, control n = 322); 1035 (79•7%) completed the mid-point postal questionnaire and 1064 (81•9%) had a final HbA1c. A limitation was that although 92.6% PSFs and peers were in telephone contact, only 61.4% of intervention participants attended a face to face session. Mean baseline HbA1c was 57 mmol/mol (7•4%), with no significant change across arms. Follow up systolic blood pressure was 2•3mm Hg (0.6 to 4.0) lower among those allocated group peer-support and 3•0mm Hg (1.1 to 5.0) lower if the group support was attended at least once. There was no impact on other outcomes by intention to treat or significant differences between arms in self-reported adherence or medication.

Conclusions

Group diabetes peer support over 8–12 months was associated with a small improvement in blood pressure but no other significant outcomes. Long term benefits should be investigated.

Trial Registration

ISRCTN.com ISRCTN6696362166963621  相似文献   
32.
Alternative splicing is regulated in part by variations in the relative concentrations of a variety of factors, including serine/arginine-rich (SR) proteins. The SR protein SC35 self-regulates its expression by stimulating unproductive splicing events in the 3′ untranslated region of its own pre-mRNA. Using various minigene constructs containing the terminal retained intron and flanking exons, we identified in the highly conserved last exon a number of exonic splicing enhancer elements responding specifically to SC35, and showed an inverse correlation between affinity of SC35 and enhancer strength. The enhancer region, which is included in a long stem loop, also contains repressor elements, and is recognized by other RNA-binding proteins, notably hnRNP H protein and TAR DNA binding protein (TDP-43). Finally, in vitro and in cellulo experiments indicated that hnRNP H and TDP-43 antagonize the binding of SC35 to the terminal exon and specifically repress the use of SC35 terminal 3′ splice site. Our study provides new information about the molecular mechanisms of SC35-mediated splicing activation. It also highlights the existence of a complex network of self- and cross-regulatory mechanisms between splicing regulators, which controls their homeostasis and offers many ways of modulating their concentration in response to the cellular environment.  相似文献   
33.
Approximately 30% of alleles causing genetic disorders generate premature termination codons (PTCs), which are usually associated with severe phenotypes. However, bypassing the deleterious stop codon can lead to a mild disease outcome. Splicing at NAGNAG tandem splice sites has been reported to result in insertion or deletion (indel) of three nucleotides. We identified such a mechanism as the origin of the mild to asymptomatic phenotype observed in cystic fibrosis patients homozygous for the E831X mutation (2623G>T) in the CFTR gene. Analyses performed on nasal epithelial cell mRNA detected three distinct isoforms, a considerably more complex situation than expected for a single nucleotide substitution. Structure-function studies and in silico analyses provided the first experimental evidence of an indel of a stop codon by alternative splicing at a NAGNAG acceptor site. In addition to contributing to proteome plasticity, alternative splicing at a NAGNAG tandem site can thus remove a disease-causing UAG stop codon. This molecular study reveals a naturally occurring mechanism where the effect of either modifier genes or epigenetic factors could be suspected. This finding is of importance for genetic counseling as well as for deciding appropriate therapeutic strategies.  相似文献   
34.
Diverse invertebrate and vertebrate species live in association with plants of the large Neotropical family Bromeliaceae. Although previous studies have assumed that debris of associated organisms improves plant nutrition, so far little evidence supports this assumption. In this study we used isotopic (15N) and physiological methods to investigate if the treefrog Scinax hayii, which uses the tank epiphytic bromeliad Vriesea bituminosa as a diurnal shelter, contributes to host plant nutrition. In the field, bromeliads with frogs had higher stable N isotopic composition (δ15N) values than those without frogs. Similar results were obtained from a controlled greenhouse experiment. Linear mixing models showed that frog feces and dead termites used to simulate insects that eventually fall inside the bromeliad tank contributed, respectively, 27.7% (±0.07 SE) and 49.6% (±0.50 SE) of the total N of V. bituminosa. Net photosynthetic rate was higher in plants that received feces and termites than in controls; however, this effect was only detected in the rainy, but not in the dry season. These results demonstrate for the first time that vertebrates contribute to bromeliad nutrition, and that this benefit is seasonally restricted. Since amphibian–bromeliad associations occur in diverse habitats in South and Central America, this mechanism for deriving nutrients may be important in bromeliad systems throughout the Neotropics.  相似文献   
35.
We investigate the effects of past changes of the effective population size on the present allelic diversity at a microsatellite marker locus. We first derive the analytical expression of the generating function of the joint probabilities of the time to the Most Recent Common Ancestor for a pair of alleles and of their distance (the difference in allele size). We give analytical solutions in the case of constant population size and the geometrical mutation model. Otherwise, numerical inversion allows the distributions to be calculated in general cases. The effects of population expansion or decrease and the possibility to detect an ancient bottleneck are discussed. The method is extended to samples of three and four alleles, which allows investigating the covariance structure of the frequencies f(k) of pairs of alleles with a size difference of k motifs, and suggesting some approaches to the estimation of past demography.  相似文献   
36.
Human African trypanosomiasis, or sleeping sickness, is a parasitic disease endemic in sub-Saharan Africa, transmitted to humans through the bite of a tsetse fly. The first or hemolymphatic stage of the disease is associated with presence of parasites in the bloodstream, lymphatic system, and body tissues. If patients are left untreated, parasites cross the blood-brain barrier and invade the cerebrospinal fluid and the brain parenchyma, giving rise to the second or meningoencephalitic stage. Stage determination is a crucial step in guiding the choice of treatment, as drugs used for S2 are potentially dangerous. Current staging methods, based on counting white blood cells and demonstrating trypanosomes in cerebrospinal fluid, lack specificity and/or sensitivity. In the present study, we used several proteomic strategies to discover new markers with potential for staging human African trypanosomiasis. Cerebrospinal fluid (CSF) samples were collected from patients infected with Trypanosoma brucei gambiense in the Democratic Republic of Congo. The stage was determined following the guidelines of the national control program. The proteome of the samples was analyzed by two-dimensional gel electrophoresis (n = 9), and by sixplex tandem mass tag (TMT) isobaric labeling (n = 6) quantitative mass spectrometry. Overall, 73 proteins were overexpressed in patients presenting the second stage of the disease. Two of these, osteopontin and β-2-microglobulin, were confirmed to be potential markers for staging human African trypanosomiasis (HAT) by Western blot and ELISA. The two proteins significantly discriminated between S1 and S2 patients with high sensitivity (68% and 78%, respectively) for 100% specificity, and a combination of both improved the sensitivity to 91%. The levels of osteopontin and β-2-microglobulin in CSF of S2 patients (μg/ml range), as well as the fold increased concentration in S2 compared with S1 (3.8 and 5.5 respectively) make the two markers good candidates for the development of a test for staging HAT patients.Human African trypanosomiasis (HAT), or sleeping sickness, is caused by an extracellular protozoan parasite of the genus Trypanosoma, which is transmitted through the bite of a tsetse fly (genus Glossina). Two morphologically identical subspecies of the parasite, are responsible for the two geographically and clinically different forms of HAT: a chronic form, widespread in West and Central Africa, caused by T. b. gambiense, and an acute form, endemic in eastern Africa, caused by T. b. rhodesiense (1). In both forms of the disease, parasites are initially localized in the blood stream, lymph, and peripheral tissues; this is the first or hemolymphatic stage (S1). During this stage, patients present generic clinical features that are common to other infectious diseases such as human immunodeficiency virus (HIV), malaria, and tuberculosis (TB), which can coexist with HAT, thus making its early diagnosis difficult (2). If treatment is not carried out, the disease progresses to the second or meningoencephalitic stage (S2) after trypanosomes cross the blood-brain barrier (BBB) and invade the central nervous system (CNS). This phase is characterized by a broad range of neurological signs that are indicative of CNS involvement (1). Diagnosis of HAT is based on parasitological demonstration of parasites in blood or lymph-node aspirate (3). All positive or suspect patients have to undergo a lumbar puncture and cerebrospinal fluid (CSF)1 examination, to determine whether they have second stage disease (4). According to the World Health Organization (WHO) guidelines, the meningoencephalitic stage is defined by the presence of parasites in CSF and/or a white blood cell (WBC) count of more than 5 cells per μl (5). Other parameters, such as intrathecal IgM production could also provide additional information to determine whether the CNS is involved (6, 7).Treatment of HAT patients varies depending on the infecting parasite and the stage of disease (5, 8). S2 drugs in current use, including melarsoprol, eflornithine, and a combination of nifurtimox and eflornithine have several limitations, such as a high rate of toxicity (melarsoprol causes death to 5% of treated patients) (9), complex logistics, and mode of administration (6, 10). Consequently, staging is a vital step in the diagnosis and treatment of HAT. However, the poor specificity or sensitivity of WBC counting and of parasitological techniques for demonstration of parasites in CSF, highlight the need for discovery of better tools for staging the disease.Several attempts have been made during the last decade to identify potential biomarkers able to discriminate between the two stages of sleeping sickness. Most of the efforts focused on cytokines and chemokines, because the patient''s immune system plays a crucial role in the brain pathology (1114).Proteomic approaches are increasingly being applied in biomedical research and clinical medicine to investigate body fluids as a source of biomarkers (15), including the diagnosis of neurological disorders such as Alzheimer''s disease (16), Parkinson''s disease (17), and multiple sclerosis (18, 19). The protein composition of CSF is strictly regulated and can reflect the physiological or pathological state of the CNS (15). Thus in the present study, we addressed the challenge of staging HAT by analyzing CSF from T. b. gambiense patients using two complementary proteomic strategies: a classical approach based on two-dimensional gel electrophoresis (2-DE), and quantitative mass spectrometry (MS) using isobaric tandem mass tag (TMT) technology (sixplex TMT® MS/MS) (20).  相似文献   
37.
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies.  相似文献   
38.
Toxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)). The ccd(F) and the ccd(O157) systems coexist in O157:H7 isolates, as these pathogenic strains contain an F-related virulence plasmid carrying the ccd(F) system. We have shown that the chromosomal ccd(O157) system encodes functional toxin and antitoxin proteins that share properties with their plasmidic homologs: the CcdB(O157) toxin targets the DNA gyrase, and the CcdA(O157) antitoxin is degraded by the Lon protease. The ccd(O157) chromosomal system is expressed in its natural context, although promoter activity analyses revealed that its expression is weaker than that of ccd(F). ccd(O157) is unable to mediate postsegregational killing when cloned in an unstable plasmid, supporting the idea that chromosomal TA systems play a role(s) other than stabilization in bacterial physiology. Our cross-interaction experiments revealed that the chromosomal toxin is neutralized by the plasmidic antitoxin while the plasmidic toxin is not neutralized by the chromosomal antitoxin, whether expressed ectopically or from its natural context. Moreover, the ccd(F) system is able to mediate postsegregational killing in an E. coli strain harboring the ccd(O157) system in its chromosome. This shows that the plasmidic ccd(F) system is functional in the presence of its chromosomal counterpart.  相似文献   
39.
In higher plants, microtubules (MTs) are assembled in distinctive arrays in the absence of a defined organizing center. Three MT nucleation sites have been described: the nuclear surface, the cell cortex and cortical MT branch points. The Arabidopsis thaliana (At) genome contains putative orthologues encoding all the components of characterized mammalian nucleation complexes: gamma-tubulin and gamma-tubulin complex proteins GCP2 to GCP6. We have cloned the cDNA encoding AtGCP2, and show that gamma-tubulin, AtGCP2 and AtGCP3 are part of the same tandem affinity-purified complex and are present in a large membrane-associated complex. In addition, small soluble gamma-tubulin complexes of the size expected for a gamma-tubulin core complex are recruited to isolated nuclei. Using immunogold labelling, AtGCP3 is localized to both the nuclear envelope (NE) and the plasma membrane. To identify domains that could play a role in targeting complexes to these nucleation sites, truncated AtGCP2- and AtGCP3-green fluorescent protein fusion proteins were expressed in BY-2 cells. Several domains from AtGCP2 and AtGCP3 are capable of targeting fusions to the NE. We propose that regulated recruitment of soluble gamma-tubulin-containing complexes is responsible for nucleation at dispersed sites in plant cells and contributes to the formation and organization of the various MT arrays.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号