首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   70篇
  718篇
  2023年   3篇
  2022年   10篇
  2021年   22篇
  2020年   13篇
  2019年   16篇
  2018年   31篇
  2017年   18篇
  2016年   21篇
  2015年   27篇
  2014年   26篇
  2013年   37篇
  2012年   62篇
  2011年   64篇
  2010年   40篇
  2009年   25篇
  2008年   42篇
  2007年   40篇
  2006年   29篇
  2005年   24篇
  2004年   21篇
  2003年   25篇
  2002年   23篇
  2001年   7篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1984年   3篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1970年   1篇
  1968年   2篇
  1960年   1篇
  1959年   1篇
  1957年   1篇
  1956年   1篇
  1945年   1篇
  1930年   1篇
排序方式: 共有718条查询结果,搜索用时 0 毫秒
11.
The production of hydrogen sulfide (H2S) during fermentation is a common and significant problem in the global wine industry as it imparts undesirable off-flavors at low concentrations. The yeast Saccharomyces cerevisiae plays a crucial role in the production of volatile sulfur compounds in wine. In this respect, H2S is a necessary intermediate in the assimilation of sulfur by yeast through the sulfate reduction sequence with the key enzyme being sulfite reductase. In this study, we used a classical mutagenesis method to develop and isolate a series of strains, derived from a commercial diploid wine yeast (PDM), which showed a drastic reduction in H2S production in both synthetic and grape juice fermentations. Specific mutations in the MET10 and MET5 genes, which encode the catalytic α- and β-subunits of the sulfite reductase enzyme, respectively, were identified in six of the isolated strains. Fermentations with these strains indicated that, in comparison with the parent strain, H2S production was reduced by 50–99%, depending on the strain. Further analysis of the wines made with the selected strains indicated that basic chemical parameters were similar to the parent strain except for total sulfite production, which was much higher in some of the mutant strains.  相似文献   
12.
13.
In metazoa, regulation of the phosphorylation state of UPF1 is crucial for nonsense-mediated mRNA decay (NMD), a process by which aberrant mRNAs containing nonsense mutations are degraded. UPF1 is targeted for dephosphorylation by three related proteins, SMG5, SMG6, and SMG7. We report here the crystal structure of the N-terminal domain of SMG7. The structure reveals that SMG7 contains a 14-3-3-like domain. Residues that bind phosphoserine-containing peptides in 14-3-3 are conserved at the equivalent positions in SMG7. Mutation of these residues impairs UPF1 binding to SMG7 in vitro and UPF1 recruitment to cytoplasmic mRNA decay foci in vivo, suggesting that SMG7 acts as an adaptor in targeting mRNAs associated with phosphorylated UPF1 for degradation. The 14-3-3 site of SMG7 is conserved in SMG5 and SMG6. These data also imply that the homologous human Est1 might have a 14-3-3 function at telomeres, and that phosphorylation events may be important for telomerase regulation.  相似文献   
14.
We have investigated the prospective association between excess gestational weight gain (GWG) and development of diabetes by 21 years post-partum using a community-based large prospective cohort study in Brisbane, Australia. There were 3386 mothers for whom complete data were available on GWG, pre-pregnancy BMI and self-reported diabetes 21 years post-partum. We used The Institute of Medicine (IOM) definition to categorize GWG as inadequate, adequate and excessive. We found 839 (25.78%) mothers gained inadequate weight, 1,353 (39.96%) had adequate weight gain and 1,194 (35.26%) had gained excessive weight during pregnancy. At 21 years post-partum, 8.40% of mothers self-reported a diagnosis of diabetes made by their doctor. In the age adjusted model, we found mothers who gained excess weight during pregnancy were 1.47(1.11,1.94) times more likely to experience diabetes at 21 years post-partum compared to the mothers who gained adequate weight. This association was not explained by the potential confounders including maternal age, parity, education, race, smoking, TV watching and exercise. However, this association was mediated by the current BMI. There was no association for the women who had normal BMI before pregnancy and gained excess weight during pregnancy. The findings of this study suggest that women who gain excess weight during pregnancy are at greater risk of being diagnosed with diabetes in later life. This relationship is likely mediated through the pathway of post-partum weight-retention and obesity. This study adds evidence to the argument that excessive GWG during pregnancy for overweight mothers has long term maternal health implications.  相似文献   
15.
16.
ObjectiveApplication of 3-iodothyronamine (3-T1AM) results in decreased body temperature and body weight in rodents. The trace amine-associated receptor (TAAR) 1, a family A G protein-coupled receptor, is a target of 3-T1AM. However, 3-T1AM effects still persist in mTaar1 knockout mice, which suggest so far unknown further receptor targets that are of physiological relevance. TAAR5 is a highly conserved TAAR subtype among mammals and we here tested TAAR5 as a potential 3-T1AM target. First, we investigated mouse Taar5 (mTaar5) expression in several brain regions of the mouse in comparison to mTaar1. Secondly, to unravel the full spectrum of signaling capacities, we examined the distinct Gs-, Gi/o-, G12/13-, Gq/11- and MAP kinase-mediated signaling pathways of mouse and human TAAR5 under ligand-independent conditions and after application of 3-T1AM. We found overlapping localization of mTaar1 and mTaar5 in the amygdala and ventromedial hypothalamus of the mouse brain. Second, the murine and human TAAR5 (hTAAR5) display significant basal activity in the Gq/11 pathway but show differences in the basal activity in Gs and MAP kinase signaling. In contrast to mTaar5, 3-T1AM application at hTAAR5 resulted in significant reduction in basal IP3 formation and MAP kinase signaling. In conclusion, our data suggest that the human TAAR5 is a target for 3-T1AM, exhibiting inhibitory effects on IP3 formation and MAP kinase signaling pathways, but does not mediate Gs signaling effects as observed for TAAR1. This study also indicates differences between TAAR5 orthologs with respect to their signaling profile. In consequence, 3-T1AM-mediated effects may differ between rodents and humans.  相似文献   
17.
Elephant and impala as intermediate feeders, having a mixed diet of grass and browse, respond to seasonal fluctuations of forage quality by changing their diet composition. We tested the hypotheses that (1) the decrease in forage quality is accompanied by a change in diet from more monocots in the wet season to more dicots in the dry season and that that change is more pronounced and faster in impala than in elephant; (2) mopane (Colophospermum mopane), the most abundant dicot species, is the most important species in the elephant diet in mopane woodland, whereas impala feed relatively less on mopane due to the high condensed tannin concentration; and (3) impala on nutrient-rich soils have a diet consisting of more grass and change later to diet of more browse than impala on nutrient-poor soils. The phosphorus content and in vitro digestibility of monocots decreased and the NDF content increased significantly towards the end of the wet season, whereas in dicots no significant trend could be detected. We argue that this decreasing monocot quality caused elephant and impala to consume more dicots in the dry season. Elephant changed their diet gradually over a 16-week period from 70% to 25% monocots, whereas impala changed diets rapidly (2?C4?weeks) from 95% to 70% monocots. For both elephants and impala, there was a positive correlation between percentage of monocots and dicots in the diet and the in vitro digestibility of these forage items. Mopane was the most important dicot species in the elephant diet and its contribution to the diet increased significantly in the dry season, whereas impala selected other dicot species. On nutrient-rich gabbroic soils, impala ate significantly more monocots than impala from nutrient-poor granitic soils, which was related to the higher in vitro digestibility of the monocots on gabbroic soil. Digestibility of food items appears to be an important determinant of diet change from the wet to the dry season in impala and elephants.  相似文献   
18.
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.  相似文献   
19.
Animals that forage for food or dig burrows by biopedturbation can alter the biotic and abiotic characteristics of their habitat. The digging activities of such ecosystem engineers, although small at a local scale, may be important for broader scale landscape processes by influencing soil and litter properties, trapping organic matter and seeds, and subsequently altering seedling recruitment. We examined environmental characteristics (soil moisture content, hydrophobicity and litter composition) of foraging pits created by the southern brown bandicoot (Isoodon obesulus; Peramelidae), a digging Australian marsupial, over a 6‐month period. Fresh diggings typically contained a higher moisture content and lower hydrophobicity than undisturbed soil. A month later, foraging pits contained greater amounts of fine litter and lower amounts of coarse litter than adjacent undug surfaces, indicating that foraging pits may provide a conducive microhabitat for litter decomposition, potentially reducing litter loads and enhancing nutrient decomposition. We tested whether diggings might affect seedling recruitment (seed removal by seed harvesters and seed germination rates) by artificially mimicking diggings. Although there were no differences in the removal of seeds, seedling recruitment for three native plant species (Acacia saligna, Kennedia prostrata and Eucalyptus gomphocephala) was higher in plots containing artificial diggings compared with undug sites. The digging actions of bandicoots influenced soil moisture and hydrophobicity, the size distribution of litter and seedling recruitment at a local scale. The majority of Australian digging mammals are threatened, with many suffering substantial population and range contraction. However, their persistence in landscapes plays an important role in maintaining the health and function of ecosystems.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号