首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   11篇
  142篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   12篇
  2014年   11篇
  2013年   11篇
  2012年   5篇
  2011年   8篇
  2010年   10篇
  2009年   8篇
  2008年   11篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   7篇
  1997年   1篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
21.

Background

Host genetics has been shown to play a role in porcine reproductive and respiratory syndrome (PRRS), which is the most economically important disease in the swine industry. A region on Sus scrofa chromosome (SSC) 4 has been previously reported to have a strong association with serum viremia and weight gain in pigs experimentally infected with the PRRS virus (PRRSV). The objective here was to identify haplotypes associated with the favorable phenotype, investigate additional genomic regions associated with host response to PRRSV, and to determine the predictive ability of genomic estimated breeding values (GEBV) based on the SSC4 region and based on the rest of the genome. Phenotypic data and 60 K SNP genotypes from eight trials of ~200 pigs from different commercial crosses were used to address these objectives.

Results

Across the eight trials, heritability estimates were 0.44 and 0.29 for viral load (VL, area under the curve of log-transformed serum viremia from 0 to 21 days post infection) and weight gain to 42 days post infection (WG), respectively. Genomic regions associated with VL were identified on chromosomes 4, X, and 1. Genomic regions associated with WG were identified on chromosomes 4, 5, and 7. Apart from the SSC4 region, the regions associated with these two traits each explained less than 3% of the genetic variance. Due to the strong linkage disequilibrium in the SSC4 region, only 19 unique haplotypes were identified across all populations, of which four were associated with the favorable phenotype. Through cross-validation, accuracies of EBV based on the SSC4 region were high (0.55), while the rest of the genome had little predictive ability across populations (0.09).

Conclusions

Traits associated with response to PRRSV infection in growing pigs are largely controlled by genomic regions with relatively small effects, with the exception of SSC4. Accuracies of EBV based on the SSC4 region were high compared to the rest of the genome. These results show that selection for the SSC4 region could potentially reduce the effects of PRRS in growing pigs, ultimately reducing the economic impact of this disease.  相似文献   
22.

Background  

Paulinella chromatophora is a freshwater filose amoeba with photosynthetic endosymbionts (chromatophores) of cyanobacterial origin that are closely related to free-living Prochlorococcus and Synechococcus species (PS-clade). Members of the PS-clade of cyanobacteria contain a proteobacterial form 1A RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) that was acquired by horizontal gene transfer (HGT) of a carboxysomal operon. In rDNA-phylogenies, the Paulinella chromatophore diverged basal to the PS-clade, raising the question whether the HGT occurred before or after the split of the chromatophore ancestor.  相似文献   
23.
24.

Background

The predictive ability of genomic estimated breeding values (GEBV) originates both from associations between high-density markers and QTL (Quantitative Trait Loci) and from pedigree information. Thus, GEBV are expected to provide more persistent accuracy over successive generations than breeding values estimated using pedigree-based methods. The objective of this study was to evaluate the accuracy of GEBV in a closed population of layer chickens and to quantify their persistence over five successive generations using marker or pedigree information.

Methods

The training data consisted of 16 traits and 777 genotyped animals from two generations of a brown-egg layer breeding line, 295 of which had individual phenotype records, while others had phenotypes on 2,738 non-genotyped relatives, or similar data accumulated over up to five generations. Validation data included phenotyped and genotyped birds from five subsequent generations (on average 306 birds/generation). Birds were genotyped for 23,356 segregating SNP. Animal models using genomic or pedigree relationship matrices and Bayesian model averaging methods were used for training analyses. Accuracy was evaluated as the correlation between EBV and phenotype in validation divided by the square root of trait heritability.

Results

Pedigree relationships in outbred populations are reduced by 50% at each meiosis, therefore accuracy is expected to decrease by the square root of 0.5 every generation, as observed for pedigree-based EBV (Estimated Breeding Values). In contrast the GEBV accuracy was more persistent, although the drop in accuracy was substantial in the first generation. Traits that were considered to be influenced by fewer QTL and to have a higher heritability maintained a higher GEBV accuracy over generations. In conclusion, GEBV capture information beyond pedigree relationships, but retraining every generation is recommended for genomic selection in closed breeding populations.  相似文献   
25.
26.

Background

Oxidoreductases are enzymes that catalyze many redox reactions in normal and neoplastic cells. Their actions include catalysis of the transformation of free, neutral oxygen gas into oxygen free radicals, superoxide, hydroperoxide, singlet oxygen and hydrogen peroxide. These activated forms of oxygen contribute to oxidative stress that modifies lipids, proteins, DNA and carbohydrates. On the other hand, oxidoreductases constitute one of the most important free radical scavenger systems typified by catalase, superoxide dismutase and glutathione peroxidase. In this work, proteomics, Gene Ontology mapping and Directed Acyclic Graphs (DAG) are employed to detect and quantify differential oxidoreductase enzyme expressions between HepG2 cells and normal human liver tissues.

Results

For the set of bioinformatics calculations whose BLAST searches are performed using the BLAST program BLASTP 2.2.13 [Nov-27-2005], DAG of the Gene Ontology's Molecular Function annotations show that oxidoreductase activity parent node of the liver proteome contains 331 annotated protein sequences, 7 child nodes and an annotation score of 188.9, whereas that of HepG2 cells has 188 annotated protein sequences, 3 child nodes and an annotation score of only 91.9. Overwhelming preponderance of oxidoreductases in the liver is additionally supported by the isomerase DAGs: nearly all the reactions described in the normal liver isomerase DAG are oxidoreductase isomerization reactions, whereas only one of the three child nodes in the HepG2 isomerase DAG is oxidoreductase. Upon normalization of the annotation scores to the parent Molecular Function nodes, oxidoreductases are down-regulated in HepG2 cells by 58%. Similarly, for the set of bioinformatics calculations whose BLAST searches are carried out using BLASTP 2.2.15 [Oct-15-2006], oxidoreductases are down-regulated in HepG2 cells by 56%.

Conclusion

Proteomics and Gene Ontology reveal, for the first time, differential enzyme activities between HepG2 cells and normal human liver tissues, which may be a promising new prognostic marker of Hepatocellular carcinoma. Two independent sets of bioinformatics calculations that employ two BLAST program versions, and searched different databases, arrived at essentially the same conclusion: oxidoreductases are down-regulated in HepG2 cells by approximately 57%, when compared to normal human liver tissues. Down-regulation of oxidoreductases in hepatoma is additionally supported by Gene Ontology analysis of isomerises.  相似文献   
27.

Background

An important step in the proteomics of solid tumors, including breast cancer, consists of efficiently extracting most of proteins in the tumor specimen. For this purpose, Radio-Immunoprecipitation Assay (RIPA) buffer is widely employed. RIPA buffer's rapid and highly efficient cell lysis and good solubilization of a wide range of proteins is further augmented by its compatibility with protease and phosphatase inhibitors, ability to minimize non-specific protein binding leading to a lower background in immunoprecipitation, and its suitability for protein quantitation.

Results

In this work, the insoluble matter left after RIPA buffer extraction of proteins from breast tumors are subjected to another extraction step, using a urea-based buffer. It is shown that RIPA and urea lysis buffers fractionate breast tissue proteins primarily on the basis of molecular weights. The average molecular weight of proteins that dissolve exclusively in urea buffer is up to 60% higher than in RIPA. Gene Ontology (GO) and Directed Acyclic Graphs (DAG) are used to map the collective biological and biophysical attributes of the RIPA and urea proteomes. The Cellular Component and Molecular Function annotations reveal protein solubilization preferences of the buffers, especially the compartmentalization and functional distributions. It is shown that nearly all extracellular matrix proteins (ECM) in the breast tumors and matched normal tissues are found, nearly exclusively, in the urea fraction, while they are mostly insoluble in RIPA buffer. Additionally, it is demonstrated that cytoskeletal and extracellular region proteins are more soluble in urea than in RIPA, whereas for nuclear, cytoplasmic and mitochondrial proteins, RIPA buffer is preferred. Extracellular matrix proteins are highly implicated in cancer, including their proteinase-mediated degradation and remodelling, tumor development, progression, adhesion and metastasis. Thus, if they are not efficiently extracted by RIPA buffer, important information may be missed in cancer research.

Conclusion

For proteomics of solid tumors, a two-step extraction process is recommended. First, proteins in the tumor specimen should be extracted with RIPA buffer. Second, the RIPA-insoluble material should be extracted with the urea-based buffer employed in this work.  相似文献   
28.
An increased availability of genotypes at marker loci has prompted the development of models that include the effect of individual genes. Selection based on these models is known as marker-assisted selection (MAS). MAS is known to be efficient especially for traits that have low heritability and non-additive gene action. BLUP methodology under non-additive gene action is not feasible for large inbred or crossbred pedigrees. It is easy to incorporate non-additive gene action in a finite locus model. Under such a model, the unobservable genotypic values can be predicted using the conditional mean of the genotypic values given the data. To compute this conditional mean, conditional genotype probabilities must be computed. In this study these probabilities were computed using iterative peeling, and three Markov chain Monte Carlo (MCMC) methods – scalar Gibbs, blocking Gibbs, and a sampler that combines the Elston Stewart algorithm with iterative peeling (ESIP). The performance of these four methods was assessed using simulated data. For pedigrees with loops, iterative peeling fails to provide accurate genotype probability estimates for some pedigree members. Also, computing time is exponentially related to the number of loci in the model. For MCMC methods, a linear relationship can be maintained by sampling genotypes one locus at a time. Out of the three MCMC methods considered, ESIP, performed the best while scalar Gibbs performed the worst.  相似文献   
29.

Background  

Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号